373 research outputs found

    20GHz picosecond pulse generation by 1300nm mode-locked quantum dot master oscillator power amplifier

    Get PDF
    An integrated 1300 nm QD mode-locked narrow stripe MOPA is shown to generate 10.5 ps Fourier transform limited pulses at 20 GHz. The pulse train has an average power of 46.4 mW and peak powers exceeding 0.31 W

    Demonstration of a lossless monolithic 16x16 QW SOA switch

    Get PDF
    10Gb/s error-free operation of the first monolithic 16×16 quantum well semiconductor optical amplifier switch is demonstrated. The switch has a 2dB facet-to-facet gain and a minimum power penalty of 2.5dB

    40 Gb/s data transmission over a 1 m long multimode polymer spiral waveguide

    Get PDF
    We report record error-free data transmission of 40Gb/s over a 1m-long multimode polymer spiral waveguide. The waveguide imposes no significant transmission impairments in the link despite its highly-multimoded nature and long length, demonstrating its potential in high-speed board-level optical interconnections

    Randomized trial comparing proactive, high-dose versus reactive, low-dose intravenous iron supplementation in hemodialysis (PIVOTAL) : Study design and baseline data

    Get PDF
    Background: Intravenous (IV) iron supplementation is a standard maintenance treatment for hemodialysis (HD) patients, but the optimum dosing regimen is unknown. Methods: PIVOTAL (Proactive IV irOn Therapy in hemodiALysis patients) is a multicenter, open-label, blinded endpoint, randomized controlled (PROBE) trial. Incident HD adults with a serum ferritin 700 μg/L and/or TSAT ≥40%) or a reactive, low-dose IV iron arm (iron sucrose administered if ferritin <200 μg/L or TSAT < 20%). We hypothesized that proactive, high-dose IV iron would be noninferior to reactive, low-dose IV iron for the primary outcome of first occurrence of nonfatal myocardial infarction (MI), nonfatal stroke, hospitalization for heart failure or death from any cause. If noninferiority is confirmed with a noninferiority limit of 1.25 for the hazard ratio of the proactive strategy relative to the reactive strategy, a test for superiority will be carried out. Secondary outcomes include infection-related endpoints, ESA dose requirements, and quality-of-life measures. As an event-driven trial, the study will continue until at least 631 primary outcome events have accrued, but the expected duration of follow-up is 2-4 years. Results: Of the 2,589 patients screened across 50 UK sites, 2,141 (83%) were randomized. At baseline, 65.3% were male, the median age was 65 years, and 79% were white. According to eligibility criteria, all patients were on ESA at screening. Prior stroke and MI were present in 8 and 9% of the cohort, respectively, and 44% of patients had diabetes at baseline. Baseline data for the randomized cohort were generally concordant with recent data from the UK Renal Registry. Conclusions: PIVOTAL will provide important information about the optimum dosing of IV iron in HD patients representative of usual clinical practice. Trial Registration: EudraCT number: 2013-002267-25.Peer reviewedFinal Published versio

    150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model

    Get PDF
    The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits

    Non-Critical Waveguide Alignment for Vertically-Coupled Microring using a Mode-Expanded Bus Architecture

    Get PDF
    Vertically coupled microrings in an all-pass filter configuration are fabricated with a range of waveguide misalignments deliberately introduced into the lithography masks to demonstrate noncritical fabrication requirements. The microrings have a mode-expanded bus design which allows a greatly reduced variation in power coupling coefficient-only 6% for fabrication misalignments as high as 1 µm. This represents a five-fold improvement in fabrication tolerance when compared with conventional designs

    Ultracold Atoms in 1D Optical Lattices: Mean Field, Quantum Field, Computation, and Soliton Formation

    Full text link
    In this work, we highlight the correspondence between two descriptions of a system of ultracold bosons in a one-dimensional optical lattice potential: (1) the discrete nonlinear Schr\"{o}dinger equation, a discrete mean-field theory, and (2) the Bose-Hubbard Hamiltonian, a discrete quantum-field theory. The former is recovered from the latter in the limit of a product of local coherent states. Using a truncated form of these mean-field states as initial conditions, we build quantum analogs to the dark soliton solutions of the discrete nonlinear Schr\"{o}dinger equation and investigate their dynamical properties in the Bose-Hubbard Hamiltonian. We also discuss specifics of the numerical methods employed for both our mean-field and quantum calculations, where in the latter case we use the time-evolving block decimation algorithm due to Vidal.Comment: 14 pages, 2 figures; to appear in Journal of Mathematics and Computers in Simulatio

    The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction

    Full text link
    We study the one-dimensional Bose-Hubbard model using the Density-Matrix Renormalization Group (DMRG).For the cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott-insulators and charge density wave phases are determined. We find a direct phase transition between the charge density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the effective interactions in the superfluid phase are repulsive. It is known from Luttinger liquid theory that a single impurity causes the system to be insulating if the effective interactions are repulsive, and that an even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac-conductivity in the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is found in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    European Society for Organ Transplantation (ESOT) Consensus Statement on the Role of Pancreas Machine Perfusion to Increase the Donor Pool for Beta Cell Replacement Therapy

    Get PDF
    The advent of Machine Perfusion (MP) as a superior form of preservation and assessment for cold storage of both high-risk kidney’s and the liver presents opportunities in the field of beta-cell replacement. It is yet unknown whether such techniques, when applied to the pancreas, can increase the pool of suitable donor organs as well as ameliorating the effects of ischemia incurred during the retrieval process. Recent experimental models of pancreatic MP appear promising. Applications of MP to the pancreas, needs refinement regarding perfusion protocols and organ viability assessment criteria. To address the “Role of pancreas machine perfusion to increase the donor pool for beta cell replacement,” the European Society for Organ Transplantation (ESOT) assembled a dedicated working group comprising of experts to review literature pertaining to the role of MP as a method of improving donor pancreas quality as well as quantity available for transplant, and to develop guidelines founded on evidence-based reviews in experimental and clinical settings. These were subsequently refined during the Consensus Conference when this took place in Prague.</p
    corecore