70,431 research outputs found

    Numerical and experimental studies of particle flow in a high-pressure boundary-layer wind tunnel

    Get PDF
    The approach was to simulate the surface environment of Venus as closely as practicable and to conduct experiments to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. The Venus Wind Tunnel (VWT) is described and the experimental procedures that were developed to make the high-pressure wind tunnel measurements are presented. In terrestrial simulations of aeolian activity, it is possible to conduct experiments under pressures and temperatures found in natural environments. Because of the high pressures and temperatures, Venusian simulations are difficult to achieve in this regard. Consequently, extrapolation of results to Venue potentially involves unknown factors. The experimental rationale was developed in the following way: The VWT enables the density of the Venusian atmosphere to be reproduced. Density is the principal atmospheric property for governing saltation threshold, particle flux, and the ballistics of airborne particles (equivalent density maintains dynamic similarity of gas flow). When operated at or near Earth's ambient temperature, VWT achieves Venusian atmospheric density at pressures of about 30 bar, or about one third less than those on Venus, although still maintaining dynamic similarity to Venus

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Double window viewing chamber assembly

    Get PDF
    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter

    The High Energy Behavior of the Forward Scattering Parameters---An Amplitude Analysis Update

    Get PDF
    Utilizing the most recent experimental data, we reanalyze high energy \pbar p and pp data, using the asymptotic amplitude analysis, under the assumption that we have reached `asymptopia'. This analysis gives strong evidence for a log(s/s0)\log \,(s/s_0) dependence at {\em current} energies and {\em not} log2(s/s0)\log^2 (s/s_0), and also demonstrates that odderons are {\em not} necessary to explain the experimental data.Comment: 7 pages in LaTeX, 4 figures and 5 files, uuencoded in file "sigall.uu

    Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    Get PDF
    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers

    On the discrete spectrum of quantum layers

    Full text link
    Consider a quantum particle trapped between a curved layer of constant width built over a complete, non-compact, C2\mathcal C^2 smooth surface embedded in R3\mathbb{R}^3. We assume that the surface is asymptotically flat in the sense that the second fundamental form vanishes at infinity, and that the surface is not totally geodesic. This geometric setting is known as a quantum layer. We consider the quantum particle to be governed by the Dirichlet Laplacian as Hamiltonian. Our work concerns the existence of bound states with energy beneath the essential spectrum, which implies the existence of discrete spectrum. We first prove that if the Gauss curvature is integrable, and the surface is weakly κ\kappa-parabolic, then the discrete spectrum is non-empty. This result implies that if the total Gauss curvature is non-positive, then the discrete spectrum is non-empty. We next prove that if the Gauss curvature is non-negative, then the discrete spectrum is non-empty. Finally, we prove that if the surface is parabolic, then the discrete spectrum is non-empty if the layer is sufficiently thin.Comment: Clarifications and corrections to previous version, conjecture from previous version is proven here (Theorem 1.5), additional references include

    Particle motion in atmospheric boundary layers of Mars and Earth

    Get PDF
    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow

    The t-t'-J model in one dimension using extremely correlated Fermi liquid theory and time dependent density matrix renormalization group

    Full text link
    We study the one dimensional t-t'-J model for generic couplings using two complementary theories, the extremely correlated Fermi liquid theory and time-dependent density matrix renormalization group over a broad energy scale. The two methods provide a unique insight into the strong momentum dependence of the self-energy of this prototypical non-Fermi liquid, described at low energies as a Tomonaga-Luttinger liquid. We also demonstrate its intimate relationship to spin-charge separation, i.e. the splitting of Landau quasiparticles of higher dimensions into two constituents, driven by strong quantum fluctuations inherent in one dimension. The momentum distribution function, the spectral function, and the excitation dispersion of these two methods also compare well
    corecore