8,507 research outputs found
Compressing DNA sequence databases with coil
Background: Publicly available DNA sequence databases such as GenBank are large, and are
growing at an exponential rate. The sheer volume of data being dealt with presents serious storage
and data communications problems. Currently, sequence data is usually kept in large "flat files,"
which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which
rarely achieves good compression ratios. While much research has been done on compressing
individual DNA sequences, surprisingly little has focused on the compression of entire databases
of such sequences. In this study we introduce the sequence database compression software coil.
Results: We have designed and implemented a portable software package, coil, for compressing
and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared
towards achieving high compression ratios at the expense of execution time and memory usage
during compression – the compression time represents a "one-off investment" whose cost is
quickly amortised if the resulting compressed file is transmitted many times. Decompression
requires little memory and is extremely fast. We demonstrate a 5% improvement in compression
ratio over state-of-the-art general-purpose compression tools for a large GenBank database file
containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental
additions to a sequence database.
Conclusion: coil presents a compelling alternative to conventional compression of flat files for the
storage and distribution of DNA sequence databases having a narrow distribution of sequence
lengths, such as EST data. Increasing compression levels for databases having a wide distribution of
sequence lengths is a direction for future work
France and the Bretton Woods International Monetary System: 1960-1968
We reinterpret the commonly held view in the U.S. that France, by following a policy from 1965 to 1968 of deliberately converting their dollar holdings into gold helped perpetuate the collapse of the Bretton Woods International Monetary System. We argue that French international monetary policy under Charles de Gaulle was consistent with strategies developed in the interwar period and the French Plan of 1943. France used proposals to return to an orthodox gold standard as well as conversions of its dollar reserves into gold as tactical threats to induce the United States to initiate the reform of the international monetary system towards a more symmetrical and cooperative gold-exchange standard regime.
Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera
Gaining a genomic perspective on phylogeny requires the collection of data
from many putatively independent loci collected across the genome. Among
insects, an increasingly common approach to collecting this class of data
involves transcriptome sequencing, because few insects have high-quality genome
sequences available; assembling new genomes remains a limiting factor; the
transcribed portion of the genome is a reasonable, reduced subset of the genome
to target; and the data collected from transcribed portions of the genome are
similar in composition to the types of data with which biologists have
traditionally worked (e.g., exons). However, molecular techniques requiring RNA
as a template are limited to using very high quality source materials, which
are often unavailable from a large proportion of biologically important insect
samples. Recent research suggests that DNA-based target enrichment of conserved
genomic elements offers another path to collecting phylogenomic data across
insect taxa, provided that conserved elements are present in and can be
collected from insect genomes. Here, we identify a large set (n1510) of
ultraconserved elements (UCE) shared among the insect order Hymenoptera. We use
in silico analyses to show that these loci accurately reconstruct relationships
among genome-enabled Hymenoptera, and we design a set of baits for enriching
these loci that researchers can use with DNA templates extracted from a variety
of sources. We use our UCE bait set to enrich an average of 721 UCE loci from
30 hymenopteran taxa, and we use these UCE loci to reconstruct phylogenetic
relationships spanning very old (220 MYA) to very young (1 MYA)
divergences among hymenopteran lineages. In contrast to a recent study
addressing hymenopteran phylogeny using transcriptome data, we found ants to be
sister to all remaining aculeate lineages with complete support
- …