3,290 research outputs found

    Determining jumping performance from a single body-worn accelerometer using machine learning

    Get PDF
    External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have not been sufficiently accurate for athlete monitoring. Instead, we developed a machine learning model based on characteristic features (functional principal components) extracted from a single body-worn accelerometer. Data were collected from 69 male and female athletes at recreational, club or national levels, who performed 696 jumps in total. We considered vertical countermovement jumps (with and without arm swing),sensor anatomical locations, machine learning models and whether to use resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we obtained the lowest errors with a support vector machine when using the resultant signal from a lower back sensor in jumps without arm swing. This model had a peak power RMSE of 2.3 W·kg-1 (5.1% of the mean), estimated using nested cross validation and supported by an independent holdout test (2.0 W·kg-1). This error is lower than in previous studies, although it is not yet sufficiently accurate for a field-based method. Our results demonstrate that functional data representations work well in machine learning by reducing model complexity in applications where signals are aligned in time. Our optimisation procedure also was shown to be robust can be used in wider applications with low-cost, noisy objective functions

    Discovery of a Classic FR-II Broad Absorption Line Quasar from the FIRST Survey

    Full text link
    We have discovered a remarkable quasar, FIRST J101614.3+520916, whose optical spectrum shows unambiguous broad absorption features while its double-lobed radio morphology and luminosity clearly indicate a classic Fanaroff-Riley Type II radio source. Its radio luminosity places it at the extreme of the recently established class of radio-loud broad absorption line quasars (Becker et al. 1997, 2000; Brotherton et al. 1998). Because of its hybrid nature, we speculate that FIRST J101614.3+520916 is a typical FR-II quasar which has been rejuvenated as a broad absorption line (BAL) quasar with a Compact Steep Spectrum core. The direction of the jet axis of FIRST J101614.3+520916 can be estimated from its radio structure and optical brightness, indicating that we are viewing the system at a viewing angle of > 40 degrees. The position angles of the radio jet and optical polarization are not well-aligned, differing by 20 to 30 degrees. When combined with the evidence presented by Becker et al. (2000) for a sample of 29 BAL quasars showing that at least some BAL quasars are viewed along the jet axis, the implication is that no preferred viewing orientation is necessary to observe BAL systems in a quasar's spectrum. This, and the probable young nature of compact steep spectrum sources, leads naturally to the alternate hypothesis that BALs are an early stage in the lives of quasars.Comment: 14 pages, 6 postscript figures; accepted for publication in the Astrophysical Journa

    DEVELOPING METHODS TO ASSESS THE RELATIONSHIP BETWEEN ERGOMETER AND ON-WATER ROWING PERFORMANCE FROM INDEPENDENT DATASETS

    Get PDF
    Rowing ergometers are often used by internationally competitive athletes alongside on-water rowing. This study proposes methods to develop a generalisable relationship between maximal effort 2000 m ergometer and on-water rowing performance using independent datasets. Ergometer times for 2000 m tests (n = 153) and 2000 m on-water times from international races (n = 139) were collated. Percentiles from the raw data and fitted probability density functions were mapped to develop a generalisable performance relationship. Bootstrapping was utilised to estimate the uncertainty in the percentile mappings. When built on a larger sample of athletes, this approach could be useful to identify athletes who under or overperform on water compared to ergometers, and this could provide valuable context for future biomechanical investigations of rowing technique

    A Case Study of Health Risk Behaviors in a Sample of Residents in Rural Appalachia

    Get PDF
    The purpose of this paper was to examine health risk behaviors from a sample of adults living in one of the nation’s poorest counties in Central Appalachia. A descriptive secondary analysis of data collected for a public health surveillance project was conducted to determine the most pressing health problems and risk behaviors affecting this unique population. Residents reported high rates of hypertension, back pain, and sleep problems. They also reported very low levels of physical activity. A discussion of results is provided, including a comparison of the study population to information from national surveys. The limitations of the study and implications for social work practice, policy and research are also discussed

    A Deep Look at the Emission-Line Nebula in Abell 2597

    Get PDF
    The close correlation between cooling flows and emission-line nebulae in clusters of galaxies has been recognized for over a decade and a half, but the physical reason for this connection remains unclear. Here we present deep optical spectra of the nebula in Abell 2597, one of the nearest strong cooling-flow clusters. These spectra reveal the density, temperature, and metal abundances of the line-emitting gas. The abundances are roughly half-solar, and dust produces an extinction of at least a magnitude in V. The absence of [O III] 4363 emission rules out shocks as a major ionizing mechanism, and the weakness of He II 4686 rules out a hard ionizing source, such as an active galactic nucleus or cooling intracluster gas. Hot stars are therefore the best candidate for producing the ionization. However, even the hottest O stars cannot power a nebula as hot as the one we see. Some other nonionizing source of heat appears to contribute a comparable amount of power. We show that the energy flux from a confining medium can become important when the ionization level of a nebula drops to the low levels seen in cooling-flow nebulae. We suggest that this kind of phenomenon, in which energy fluxes from the surrounding medium augment photoelectric heating, might be the common feature underlying the diverse group of objects classified as LINERS.Comment: 33 Latex pages, including 16 Postscript figures, to appear in 1997 September 1 Astrophysical Journa

    Human Activity Mediates a Trophic Cascade Caused by Wolves

    Get PDF
    Experimental evidence of trophic cascades initiated by large vertebrate predators is rare in terrestrial ecosystems. A serendipitous natural experiment provided an opportunity to test the trophic cascade hypothesis for wolves (Canis lupus) in Banff National Park, Canada. The first wolf pack recolonized the Bow Valley of Banff National Park in 1986. High human activity partially excluded wolves from one area of the Bow Valley (low-wolf area), whereas wolves made full use of an adjacent area (high-wolf area). We investigated the effects of differential wolf predation between these two areas on elk (Cervus elaphus) population density, adult female survival, and calf recruitment; aspen (Populus tremuloides) recruitment and browse intensity; willow (Salix spp.) production, browsing intensity, and net growth; beaver (Castor canadensis) density; and riparian songbird diversity, evenness, and abundance. We compared effects of recolonizing wolves on these response variables using the log response ratio between the low-wolf and high-wolf treatments. Elk population density diverged over time in the two treatments, such that elk were an order of magnitude more numerous in the low-wolf area compared to the high-wolf area at the end of the study. Annual survival of adult female elk was 62% in the high-wolf area vs. 89% in the low-wolf area. Annual recruitment of calves was 15% in the high-wolf area vs. 27% without wolves. Wolf exclusion decreased aspen recruitment, willow production, and increased willow and aspen browsing intensity. Beaver lodge density was negatively correlated to elk density, and elk herbivory had an indirect negative effect on riparian songbird diversity and abundance. These alternating patterns across trophic levels support the wolf-caused trophic cascade hypothesis. Human activity strongly mediated these cascade effects, through a depressing effect on habitat use by wolves. Thus, conservation strategies based on the trophic importance of large carnivores have increased support in terrestrial ecosystems. Read More: http://www.esajournals.org/doi/full/10.1890/04-126

    The Origin of the Mass--Metallicity Relation: Insights from 53,000 Star-Forming Galaxies in the SDSS

    Full text link
    We utilize Sloan Digital Sky Survey imaging and spectroscopy of ~53,000 star-forming galaxies at z~0.1 to study the relation between stellar mass and gas-phase metallicity. We derive gas-phase oxygen abundances and stellar masses using new techniques which make use of the latest stellar evolutionary synthesis and photoionization models. We find a tight (+/-0.1 dex) correlation between stellar mass and metallicity spanning over 3 orders of magnitude in stellar mass and a factor of 10 in metallicity. The relation is relatively steep from 10^{8.5} - 10^{10.5} M_sun, in good accord with known trends between luminosity and metallicity, but flattens above 10^{10.5} M_sun. We use indirect estimates of the gas mass based on the H-alpha luminosity to compare our data to predictions from simple closed box chemical evolution models. We show that metal loss is strongly anti-correlated with baryonic mass, with low mass dwarf galaxies being 5 times more metal-depleted than L* galaxies at z~0.1. Evidence for metal depletion is not confined to dwarf galaxies, but is found in galaxies with masses as high as 10^{10} M_sun. We interpret this as strong evidence both of the ubiquity of galactic winds and of their effectiveness in removing metals from galaxy potential wells.Comment: ApJ accepted, 15 pages, 9 figures, emulateapj.st

    The Detection and Characterization of cm Radio Continuum Emission from the Low-mass Protostar L1014-IRS

    Get PDF
    Observations by the Cores to Disk Legacy Team with the Spitzer Space Telescope have identified a low luminosity, mid-infrared source within the dense core, Lynds 1014, which was previously thought to harbor no internal source. Followup near-infrared and submillimeter interferometric observations have confirmed the protostellar nature of this source by detecting scattered light from an outflow cavity and a weak molecular outflow. In this paper, we report the detection of cm continuum emission with the VLA. The emission is characterized by a quiescent, unresolved 90 uJy 6 cm source within 0.2" of the Spitzer source. The spectral index of the quiescent component is α=0.37±0.34\alpha = 0.37\pm 0.34 between 6 cm and 3.6 cm. A factor of two increase in 6 cm emission was detected during one epoch and circular polarization was marginally detected at the 5σ5\sigma level with Stokes {V/I} =48±16= 48 \pm 16% . We have searched for 22 GHz H2O maser emission toward L1014-IRS, but no masers were detected during 7 epochs of observations between June 2004 and December 2006. L1014-IRS appears to be a low-mass, accreting protostar which exhibits cm emission from a thermal jet or a wind, with a variable non-thermal emission component. The quiescent cm radio emission is noticeably above the correlation of 3.6 cm and 6 cm luminosity versus bolometric luminosity, indicating more radio emission than expected. We characterize the cm continuum emission in terms of observations of other low-mass protostars, including updated correlations of centimeter continuum emission with bolometric luminosity and outflow force, and discuss the implications of recent larger distance estimates on the physical attributes of the protostar and dense molecular core.Comment: 14 pages. Accepted for publication in Ap

    Cosmological Feedback from High-Redshift Dwarf Galaxies

    Full text link
    We model how repeated supernova explosions in high-redshift dwarf starburst galaxies drive superbubbles and winds out of the galaxies. We compute the efficiencies of metal and mass ejection and energy transport from the galactic potentials, including the effect of cosmological infall of external gas. The starburst bubbles quickly blow out of small, high-redshift, galactic disks, but must compete with the ram pressure of the infalling gas to escape into intergalactic space. We show that the assumed efficiency of the star formation rate dominates the bubble evolution and the metal, mass, and energy feedback efficiencies. With star formation efficiency f*=0.01, the ram pressure of infall can confine the bubbles around high-redshift dwarf galaxies with circular velocities v_c>52 km/s. We can expect high metal and mass ejection efficiencies, and moderate energy transport efficiencies in halos with v_c~30-50 km/s and f*~0.01 as well as in halos with v_c~100 km/s and f*>>0.01. Such haloes collapse successively from 1-2 sigma peaks in LambdaCDM Gaussian density perturbations as time progresses. These dwarf galaxies can probably enrich low and high-density regions of intergalactic space with metals to 10^-3-10^-2 Zsun as they collapse at z~8 and z<5 respectively. They also may be able to provide adequate turbulent energy to prevent the collapse of other nearby halos, as well as to significantly broaden Lyman-alpha absorption lines to v_rms~20-40 km/s. We compute the timescales for the next starbursts if gas freely falls back after a starburst, and find that, for star formation efficiencies as low as f*<0.01, the next starburst should occur in less than half the Hubble time at the collapse redshift. This suggests that episodic star formation may be ubiquitous in dwarf galaxies.Comment: Accepted for ApJ v613, 60 pages, 15 figure
    • 

    corecore