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Abstract

External peak power in the countermovement jump is frequently used to monitor athlete

training. The gold standard method uses force platforms, but they are unsuitable for field-

based testing. However, alternatives based on jump flight time or Newtonian methods

applied to inertial sensor data have not been sufficiently accurate for athlete monitoring.

Instead, we developed a machine learning model based on characteristic features (func-

tional principal components) extracted from a single body-worn accelerometer. Data were

collected from 69 male and female athletes at recreational, club or national levels, who per-

formed 696 jumps in total. We considered vertical countermovement jumps (with and with-

out arm swing), sensor anatomical locations, machine learning models and whether to use

resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we

obtained the lowest errors with a support vector machine when using the resultant signal

from a lower back sensor in jumps without arm swing. This model had a peak power RMSE

of 2.3 W�kg-1 (5.1% of the mean), estimated using nested cross validation and supported by

an independent holdout test (2.0 W�kg-1). This error is lower than in previous studies,

although it is not yet sufficiently accurate for a field-based method. Our results demonstrate

that functional data representations work well in machine learning by reducing model com-

plexity in applications where signals are aligned in time. Our optimisation procedure also

was shown to be robust can be used in wider applications with low-cost, noisy objective

functions.

Introduction

The ability to generate high levels of neuromuscular power is a critical aspect of sports perfor-

mance [1–3]. It is strongly correlated with sprint acceleration [4–8] and serves as an indicator

of overtraining or fatigue [9–12]. Accordingly, peak external power in the countermovement

jump (CMJ) is monitored frequently in many professional athletes [13,14]. Reports of peak
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power reductions typically range from 3.5% for a training protocol [10] to 12.4% for Australian

rules football players 24 hours after a match [9]. The gains in peak power from training can be

more substantial with average increases over three years of 13% and 46% reported for male

Australian Rules football players and female collegiate gymnasts, respectively [15,16].

Jump testing has practical advantages as it can be administered quickly without residual

fatigue, typically before a training session [13,14]. However, the gold-standard method relies

on force platforms, which are cumbersome, expensive and unsuited to field-based testing [17].

Many coaches prefer to measure jump height instead of peak power as it requires minimal

setup time and equipment [14]. However, although it has some factorial validity [18], jump

height is a distinct measure from peak power (r = 0.93) [19]. Whereas jump height depends on

the cumulative work done (impulse converts to take-off velocity through the conservation of

momentum), power is an instantaneous measure reflecting the ability of the locomotor appa-

ratus to perform rapid movements.

Formulae have been proposed for predicting peak power from jump height and body mass,

with errors of 247–562 W, equivalent to 6.0–16.5% [20–25]. When those same equations were

tested independently, their errors ranged more widely from 3.8–25.3% [24–27]. In recent

years, researchers have investigated the use of body-worn inertial sensors to estimate instanta-

neous power from the body’s vertical acceleration and velocity. The peak power estimates,

however, were similarly inaccurate with errors of 10.7–21.2% [28–30]. These Newtonian

approaches are highly sensitive to the small errors that arise from corrections needed to the

sensor’s changing orientation [31–33]. Moreover, even without such errors, the computed

peak power would not be the same as the true external power because the sensor does not fol-

low the trajectory of the body’s centre of mass [34].

Rather than computing peak power directly from the signal, a machine learning approach

may be more successful by relating patterns in the data to the performance outcome. Machine

learning (ML) models and deep neural networks have been used to predict discrete perfor-

mance measures derived from the ground reaction force (VGRF), such as peak force or load-

ing rate [35–40]. The ML models in these studies performed at least as well as the neural

networks, but without needing high data volumes that can be challenging to obtain, especially

in the study of human movement. Different techniques for extracting characteristic features

from the data have ranged from devising bespoke metrics to collecting generic statistical mea-

sures or employing dimensional reduction techniques such as Principal Component Analysis

(PCA). Features based on functional principal components (FPCs) were considerably more

accurate than expert-determined discrete measures when predicting jump height from VGRF

data [41,42]. Indeed, Functional Principal Component Analysis (FPCA) has been applied to a

diverse range of applications in biomechanics. Studies have reported strong associations

between FPCs and various performance or injury risk measures in sports, including rowing,

swimming, weightlifting, race walking and jumping [41,43–51]. These applications analysed

the FPC scores using descriptive statistics, t-tests, ANOVA, discriminant analysis or a simple

regression model to address their research questions. However, more sophisticated ML models

in conjunction with FPCA have not yet been investigated.

When developing an ML model, its parameters need to be tuned through an optimisation

procedure, typically using cross validation. However, if model selection is not made indepen-

dently of model evaluation, then the model selection bias leads to an under-estimation of the

model’s generalised predictive error [52–55]. Nested cross validation (NCV), also known as

double cross validation, overcomes this problem by enforcing the separation between model

selection and evaluation, yielding unbiased error estimates [55–58]. It allows different K-fold

cross validation (CV) designs to be used for model selection and evaluation, which have
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distinct requirements [59]. However, despite its advantages NCV is rarely used in machine

learning studies, not least in biomechanics.

This paper presents new models based on functional principal components for predicting

peak power in the CMJ from body-worn sensor data. We focus on a single sensor solution for

practical reasons as athletes often wear a single inertial measurement unit (IMU) in team

sports. Our aim was to produce a model with a predictive error smaller than a typical athlete’s

inter-day variability. In order to obtain a threshold value for this inter-day variability a priori,
we averaged the reported inter-day variability in trained athletes across three studies

[10,60,61], obtaining a target error level of 3.4%. We modified existing techniques to develop a

novel and rigorous optimisation procedure within a nested cross validation framework [62–

64]. The optimisation concerned parameters for data preprocessing and the model itself,

thereby encompassing the whole modelling procedure [59]. We used this procedure to answer

the following research questions: (1) How accurately can peak external power be determined

during a CMJ using an ML model based on body-worn accelerometer data? (2) Which of the

anatomical locations considered is best for the sensor? (3) How should the signal data be

processed?

Materials and methods

Data collection

We recruited 69 healthy participants (45 males, 24 females: body mass 73.1 ± 13.1 kg

(mean ± SD); height 1.74 ± 0.10 m; age 21.6 ± 1.5 years) who gave their written informed con-

sent. The study was approved by the Research Ethics and Governance Committee of Swansea

University’s College of Engineering. All the participants played a sport, either at recreational

(15), club (43) or national (11) level, except for four who trained regularly in the gym. The

most frequent sports were football (10), volleyball (7), netball (5), rugby union (5) and rowing

(5). The participants each performed either 8 or 16 maximal effort CMJs, divided equally

between jumps with arm swing (CMJA) and those without (CMJNA), where hands were placed

on hips. Most participants (55) completed 8 jumps as they also performed 8 broad jumps as

part of a wider research project. The order of jumps was randomised to minimise potential

learning and fatigue effects. The participants were given one minute’s rest between each jump.

All jumps were performed on two portable 400 × 600 mm force platforms (9260AA, Kistler,

Winterthur, Switzerland), which recorded the vertical component of the ground reaction force

at a sampling frequency of 1000 Hz. For convenience, all abbreviations used in this paper are

listed in Table 1.

The unfiltered VGRF data, summed from both platforms, with body weight (BW) sub-

tracted, gave the net force. The resulting acceleration (i.e. net force/mass) was integrated using

the trapezoidal rule to obtain the vertical velocity. The product of velocity and VGRF gave the

instantaneous power, from which the maximum value, normalised to body mass, gave the cri-

terion value for peak power in the models below (W�kg-1). Jump initiation, the start point for

the integration procedure, was identified using a two-step procedure adapted from [65]. The

jump was detected initially where VGRF deviated by more than 8% BW, yet the movement

must have begun earlier. Rather than using a fixed 30 ms backwards offset [65], the offset

depended on where the VGRF deviation had exceeded 1% BW immediately before reaching

the 8% threshold.

Delsys Trigno sensors (Delsys Inc., Natick, MA, USA) were attached over the L4 vertebra

on the lower back (LB sensor), the C7 vertebra on the upper back (UB sensor), and the lower

anterior medial aspect of the tibias (LS/RS sensors), three anatomical positions commonly

used in field-based testing [66] (Fig 1). They were attached directly to the skin using double-
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sided surgical tape and held firmly in place by an elastic adhesive bandage to minimise soft-tis-

sue movement [67,68]. The sensors transmitted the analogue triaxial accelerations (±9 g) for

each jump to a receiving station connected to a computer. Vicon Nexus v2.5 software (Vicon,

Oxford, UK) sampled the analogue accelerometer data at 250 Hz and synchronised it with the

VGRF data. Although the sensors could digitally sample the measurements, the analogue form

Table 1. Summary of abbreviations.

Acronym Definition

AM Accelerometer Model

ANOVA Analysis of Variance

BW Body Weight

CMJ Countermovement Jump

CV Cross Validation

FPC Functional Principal Component

FPCA Functional Principal Component Analysis

GPR Gaussian Process Regression

GPS Global Positioning System

IMU Inertial Measurement Unit.

LB Lower Back

LR Linear Regression

LS Left Shank

ML Machine Learning

NCV Nested Cross Validation

PCA Principal Component Analysis.

PSO Particle Swarm Optimisation.

RMSE Root Mean Squared Error.

RS Right Shank

SM Surrogate Model).

SVM Support Vector Machine

UB Upper Back

VGRF Vertical Ground Reaction

https://doi.org/10.1371/journal.pone.0263846.t001

Fig 1. Illustration showing the anatomical position of the inertial sensors. (A) Lower back (LB) sensor attached with

double-side tape and held in place with an inelastic adhesive bandage wrapped around the waist; (B) Upper back (UB)

sensor attached only with double-sided tape; (C) Left shank (LS) sensor also attached with the same tape and held firmly

in place by an adhesive bandage wrapped around the leg. The right shank (RS) sensor (not shown) was attached in the

same way.

https://doi.org/10.1371/journal.pone.0263846.g001
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made the direct synchronisation of accelerometer and VGRF data possible. The sensors were

calibrated following the manufacturer’s instructions by placing them in six stationary, orthog-

onal orientations.

Data processing

Data from 696 CMJs were recorded, although four jumps had to be discarded owing to an

issue with the accelerometer data. The data (VGRF and accelerometer time series) from 60

participants were assigned to a training/validation data set (548 jumps), while data from the

remaining 9 participants (randomly chosen) were placed in an independent holdout test set

(144 jumps). All bodyweight-normalised VGRF time series were padded to a standard length,

the longest time series. A series of 1’s was inserted (i.e. equal to body weight), as required, at

the start of the time series to mimic quiet standing before the jump and at the end to reflect the

standing position regained after the landing. A similar operation was performed on the accel-

erometer signal, inserting values equal to the mean acceleration recorded at the start in quiet

standing. However, the optimal model may not require the full-length time series, so data were

extracted from a time window beginning at a specified time before take-off (tpre) and ending at

a time after take-off (tpost). These two parameters were allowed to vary in steps of 0.1 s. The

take-off time for the accelerometer data was identified where the VGRF dropped below 10 N

for the first time [69]. The landing time was when VGRF subsequently rose above 10 N. The

flight time was the difference between the take-off and landing times. All processing, unless

otherwise stated, was performed in MATLAB R2021a (MathWorks, Natick, MA, USA). The

code is available from GitHub: https://github.com/markgewhite/accModel.

The accelerometer signals were padded to the same duration as the VGRF data with the mean

acceleration vector over the first 0.5 s when the participant stood still before the jump. The signals

were then converted into smooth, continuous functions using b-splines [42]. The number of

basis functions was defined indirectly as a density (ρ, b-splines per unit time) to make it indepen-

dent of the time window parameters. The basis function specification (F) incorporated the basis

order and the penalty order for the roughness penalty. The basis ranged from 4th order (cubic) to

6th order to offer more flexibility and greater b-spline overlap. The accelerometer signal was

smoothed either by penalising high curvature (2nd order derivative) or by the rate of change of

curvature (3rd order derivative), which would permit abrupt acceleration changes, such as pre-

serving the amplitude of the high acceleration peak on landing. Using a single categorical param-

eter,F, rather than having two parameters (basis and penalty order) reduced the parameter space

dimensionality and provided a list of valid combinations (see Search Range in Table 2). NC speci-

fied the number of retained Functional Principal Components (FPCs) [42]. No varimax rotation

was used in order to preserve the FPCs’ independence and avoid multicollinearity. These proce-

dures were applied to the accelerometer data from all four sensors, providing separate data sets

for the ML models. All the parameters are summarised in Table 2.

Modelling procedures

Three common machine learning models were considered: regularised linear regression (LR),

support vector machine (SVM) and Gaussian process regression (GPR). The regression mod-

els’ predictor variables were the accelerometer FPC scores, and the outcome variable was the

peak external power computed from the VGRF data. The model hyperparameters and the data

processing parameters were determined through the optimisation procedure described below.

Nested cross validation. The optimisation procedure was run within an NCV framework

to produce unbiased estimates of the model’s generalised predictive error [54–57,70]. The data

were first partitioned at the participant level with a 10-fold design for the outer loop. Jumps
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from 54 of the 60 participants were assigned randomly to a training set for each iteration,

while the remaining 6 participants were placed in a validation set (Fig 2A). The 10-fold parti-

tioning was repeated (2 × 10 outer loop iterations) to reduce uncertainty in the predictive

error estimate [57,71,72]. A 10-fold design was recommended for model evaluation as valida-

tion error estimates have low bias [59,73] and to provide a large proportion of the data for the

model selection [55]. For each outer iteration, model selection was performed on the outer

training set using 2-fold CV. The inner training and validation sets both comprised data from

26 participants (Fig 2B). Two-fold CV provides a large validation set to increase the likelihood

of selecting the best regression model [74,75]. The best model that emerged from the inner

loop was evaluated on the outer validation set. Since this data had been kept separate, the vali-

dation RMSE was an independent test of the whole modelling procedure.

Objective function. The accelerometer model function (AM) performed all aspects of the

modelling process and served as the objective function, returning the 2-fold validation RMSE

(loss) for the outer training data set. It carried out time series padding, functional smoothing,

data partitioning and the CV inner loop, including FPCA and model fitting, prediction and

validation error calculations. The AM defined FPCs based on the inner training partition

alone and used them to compute the FPC scores for both the inner training and validation

sets. It penalised invalid parameter combinations by returning a high loss (10 W�kg-1). Invalid

parameter combinations arose when there were insufficient basis functions for the number of

Table 2. Data processing parameters with their respective ranges.

Model Parameter Description Type † Search Range ‡ Optimisation Bounds

§

All tpre Time before take-off I [-35, . . ., 5] × 100 ms [0.51, 30.49]

tpost Time after take-off I [-5, . . ., 35] × 100 ms [0.51, 30.49]

ρ Density of basis functions per second R [2 . . . 22] [4, 20]

F Basis function (order and penalty

derivative)

C {4-2, 5-2, 5-3, 6-2, 6-3, 6-4} � [0.51, 6.49]

λ Roughness penalty R [-12 . . . 12] [-10, 10]

NC No. retained FPCs I [1, . . ., 35] [3.51, 30.49]

Z Standardisation ¶ C {No, Yes} [0.51, 2.49]

LR R Regularisation Method C {Ridge, Lasso} [0.51, 2.49]

S Solver Method C {SVM, Least Squares} [0.51, 2.49]

λLR Regularisation Parameter R [-12 . . . 12] [-10, 10]

SVM ΚSVM Kernel C {Gaussian, Linear, Polynomial} [0.51, 3.49]

BC Box Constraint R [-7 . . . 9] [-6, 8]

KS Kernel Scale R [-7 . . . 9] [-6, 8]

ε R [-5 . . . 3] [-4, 2]

GPR B Basis C {None, Constant, Linear, Pure Quadratic} [0.51, 4.49]

ΚGPR Kernel C {Exponential, Squared Exponential, Matérn 3/2, Matérn 5/2,

Rational Quadratic}

[0.51, 5.49]

σ Noise R [-5. . . 3] [-4, 2]

† Parameter type: C = Categorical; I = Integer; R = Real (continuous, log10 transformed).

‡ Random search range has a broader range to gather data outside the optimisation bounds to prevent boundary effects–see text. Further constraints are imposed by the

surrogate model.

§ Particle Swarm Optimisation uses real parameters, so the bounds extend 0.50 below and 0.49 above for categorical (indexed) and integer parameters so when rounded,

there is no bias at lower and upper limits.

� Basis encoding = <basis order>-<penalty order>, defines valid combinations.

¶ Standardise the predictors and outcome variables as Z scores during fitting.

https://doi.org/10.1371/journal.pone.0263846.t002
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FPCs required or if the resulting FPC-score training matrix did not have full column rank.

Losses were also capped at 10 W�kg-1 to prevent very occasional extreme losses from destabilis-

ing the optimisation.

Surrogate model. A Bayesian approach is needed to accommodate the objective func-

tion’s stochastic behaviour arising from the CV subsampling variance. Many AM observations

were required given the high-dimensional parameter space, but we found Bayesian optimisa-

tion became prohibitively expensive as more observations were added. Instead, we adapted a

random search procedure [76] with a low overhead so it was tractable to make hundreds of

observations. A surrogate model (SM) was fitted to the observations based on a Gaussian Pro-

cess (GP), thus retaining the Bayesian approach [77]. The SM had the same specification used

by MATLAB for its bayesopt optimiser: an anisotropic Matérn 5/2 kernel and a constant basis

function with no predictor standardisation.

Constrained random search. The random search made 400 observations in each optimi-

sation that were constrained to regions of the parameter space where the SM predicted a low

AM loss. The constraint was imposed according to the following probability function that gov-

erned whether a randomly generated point was accepted:

p ¼
1; Li � Lmax

exp
� ðLi � LmaxÞ

2

2d
2

� �

; Li > Lmax

8
><

>:

where

Lmax ¼ L0 þ ajSDðLÞ; d ¼
1

2SDðLÞ=

Fig 2. Schematic design of the nested cross validation and optimisation procedure. (A) The training/validation set

is partitioned 10-fold for the outer loop, and then (B) each training outer set is re-partitioned 2-fold for the inner loop.

(C) Optimisation works with the observations from the inner loop to determine an ensemble model based on the series

of optimal parameters determined by Particle Swarm Optimisation. (D) The ensemble model is then evaluated on the

outer training set. (E) The process repeats for each outer fold, adding to the series of optimal parameters used to

determine the outer ensemble model. (F) This yields parameter distribution and partial plots. It also produces the final

ensemble model that may be applied to the holdout data.

https://doi.org/10.1371/journal.pone.0263846.g002
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Li is the SM prediction for the i-th observation using the j-th surrogate model, such that i 2
{1. . .400} and j 2 {1. . .20}. Hence, the SM was retrained every 20 observations. Lmax is a pro-

gressively declining upper limit to a baseline loss, L0. δ is a measure of how likely points

exceeding Lmax will be accepted. αj has a ramp profile to constrain the search such that it

decreases linearly from 0.5 to 0 over the first half of the search and thereafter remains at zero

(Fig 2C). Thus, the search initially surveys the parameter space when almost all points are

accepted before tightly focusing its search in promising regions, relying almost entirely on the

probability function. Often hundreds of candidate points could be rejected until one is

accepted, but the overhead was minimal as the SM predictions were computed quickly

(~0.0005 s vs 0.2 s for the AM).

Optimisation. The SM was deterministic so global optimisers other than those using

Bayesian methods could be employed. We chose Particle Swarm Optimisation (PSO) as it has

been used to good effect in previous model optimisation problems [78–80]. It was set up to use

100 particles with an objective tolerance of 0.001. Since PSO only works with continuous vari-

ables, it was necessary to index the categorical parameters (Table 2) and use an intermediate

objective function that rounded the categorical and integer parameters to the nearest whole

number. PSO was run after the SM was retrained on these indexed parameters (Fig 2C). The

random search was wider than PSO parameter bounds in order to populate a border region to

ensure the SM was well-defined at the periphery (Table 2, last column).

Ensemble models. Once the random search and the final PSO were complete, an ensem-

ble model was selected based on maximum likelihood. For categorical parameters, the most

frequently occurring category was chosen, and for numeric parameters, the value with the

highest probability density. The values were drawn from the series of PSO-determined optimal

models, taken from the second half of the search when αj = 0, provided the constraints were

satisfied (Fig 2C). The ensemble model was trained on the outer training set and evaluated on

the outer validation set (Fig 2D). The NCV predictive error estimate was the average outer val-

idation RMSE. Since model selection yielded a different model for each outer fold, the same

maximum likelihood procedure was used to determine the final ensemble model parameters

for the whole data set. The procedure ran on an aggregated list of PSO-determined optimal

models taken from all outer folds (Fig 2E). The ensemble AM was trained on the entire train-

ing/validation set and then evaluated on the holdout test set to provide a final independent test

of the model (Fig 2F).

Model analysis

Statistical comparisons. The whole modelling procedure above was run for each combi-

nation of model type (LR, SVM, GPR), sensor location (LB, UB, LS, RS) and jump type

(CMJNA, CMJA). This analysis was performed on data sets based on the resultant or triaxial

accelerometer signals to determine the best signal representation. The outer validation errors

were compared between conditions (signal representation, model type, sensor location, jump

type) using a two-way ANOVA with 960 observations (2 signal representations × 3 model

types × 4 sensor locations × 2 jump types × 20 outer folds). The ANOVA model was another

surrogate model predicting AM loss, which, although inferior to the GP model, allowed

hypothesis testing. Effect sizes were based on semi-partial ω2, the proportion of the total vari-

ance (significance level 0.05) [81]. It was necessary to Winsorise all the data because a few

outer validation errors for the SVM models were extremely large (� 10 W�kg-1, including

six> 20 W�kg-1, three > 40 W�kg-1), rendering otherwise significant effects undetectable.

Accordingly, ten observations at opposite ends of the range were adjusted, equivalent to the 1st

and 100th percentiles.
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The statistical procedures were run in SAS Studio 3.8 (SAS Institute Inc., Cary, NC, USA)

using Proc GLM. These procedures were bootstrapped (1000 replicas, stratified by condition)

to obtain robust estimates because there was no homogeneity of variances at the model type

level, according to Levene’s test (no suitable transformations would suffice). The bootstrapped

estimates are reported with 90% confidence intervals using the median for the central estimate

and the 5th and 95th percentiles for the limits.

Model refinement. We selected the dataset with the lowest RMSE across the three model

types for further refinement through repeated optimisations. For each model type, some

parameter distributions indicated a strong preference for a certain optimal value. In addition,

the associated SM partial plots generally showed an advantageous lower predicted loss. Where

this was the case, the parameter was fixed at this value, removing it from the optimisation. We

judged this subjectively as no satisfactory objective rules could be devised. In other cases,

where there was no clear choice, specific values could not be excluded from the search range.

Four rounds of optimisation were run for each model type, successively intensifying the search

each time. The fourth and final optimal model was then applied to the holdout data set as an

independent test.

Results

The peak power computed from the VGRF data (criterion measure) was similar between the

training/validation and holdout groups, with higher peak powers recorded in jumps with arm

swing (Table 3).

The bootstrapped ANOVA reported an overall effect of F(9,959) = 24.7 [19.3, 31.1],

p< 0.0001 with total ω2 = 0.190 [0.155, 0.228]. The strongest effects on the outer validation

error were made by model type and jump type, respectively, explaining 10.6% and 4.6% of the

variance (Table 4). These two factors, and sensor location, were the only ones that were signifi-

cant across the 90% confidence interval. Signal representation did not always reach signifi-

cance as the bootstrapped interval for the p-value extended beyond 0.05. It explained less than

1% of the variance, as did the interaction between model type and jump type, the only signifi-

cant interaction.

The distributions of the Winsorised outer validation errors, grouped by condition, are

shown in Fig 3 (top row), revealing which levels within each condition yield more accurate

models. Predictions of peak power in the CMJNA are significantly more accurate in absolute

terms than in the CMJA: 3.82 W�kg-1 vs 4.62 W�kg-1 (Fig 3A). However, relative to the data

set’s mean peak power the difference was less marked: 8.5% vs 9.0%. Using the LB sensor

yielded more accurate models than when sensors were located elsewhere (Fig 3B), although

this difference only reached significance compared to RS models. The errors of the UB, LS and

RS sensor-based models were not significantly different from one another. Models based on

the resultant accelerometer signal were marginally more accurate than those based on the tri-

axial signal, but this difference was not significant (Fig 3C). The model types’ errors were all

significantly different from one another, with the GPR model being most accurate (Fig 3D).

Table 3. Peak power (W�kg-1) computed from VGRF data.

Mean ± SD 10th– 90th Percentile Min, Max

Training / Validation data set CMJNA 45.0 ± 7.3 35.2–54.1 27.2, 63.6

CMJA 51.5 ± 8.6 39.7–62.1 28.1, 72.5

Holdout data set CMJNA 47.6 ± 8.1 33.0–55.9 29.4, 59.0

CMJA 53.4 ± 10.0 34.9–63.9 31.6, 67.0

https://doi.org/10.1371/journal.pone.0263846.t003
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(This general comparison between model types will be revised as the models are refined

below.) Considering the models based on the resultant signal for the CMJNA (best combination

for the jump type and signal representation conditions), the GPR models based on the LB sen-

sor data yielded the lowest error (2.67 W�kg-1, Fig 3E). As the LB-CMJNA resultant data set

yielded the best models, it was carried forward for the further optimisation of the three model

types below.

The distribution of optimal parameters, aggregated over all outer folds, is shown in Fig 4

(data parameters) and Fig 5 (model parameters) for each model type. The ensemble optimal

value for each parameter is highlighted on each plot (peak probability density or peak fre-

quency). Most distributions are spread widely across the range with only a modest peak (e.g.

tpre and tpost), but for some there are more prominent peaks (e.g. SVM model parameters; Fig

4B), none more so than the strong preference for no standardisation. Peaks in the optimisation

parameter distributions reflect minima in the partial plots of the SM, as expected (Figs 5–7).

Table 4. ANOVA Type I effects for the optimised models’ outer validation RMSE.

Effect DF† F ω2

Model 2 63.5 [46.4, 81.7] ��� § 0.106 [0.080, 0.134]

Jump Type 1 55.1 [32.8, 84.9] ��� § 0.046 [0.028, 0.069]

Sensor 3 7.7 [3.2, 14.0] ��� § 0.017 [0.006, 0.033]

Signal 1 6.1 [0.9, 17.5] � 0.004 [0.000, 0.014]

Model × Jump Type 2 3.5 [0.4, 10.4] � 0.004 [-0.001, 0.015]

Significance for the central estimate indicated by � p< 0.05, �� p< 0.01, ��� p< 0.001.

§ indicates significance across the bootstrapped 90% CI shown in brackets.

† DF = Degrees of Freedom.

https://doi.org/10.1371/journal.pone.0263846.t004

Fig 3. Outer validation RMSE distribution by level for each condition. Top row: single factors in the GLM, namely

(A) Jump Type; (B) Sensor location; (C) Signal representation; (D) Model type. Bottom row: two factors (E) Model

type and sensor location for the CMJNA using the resultant signal representation. Horizontal arrows indicate

significant differences, where � p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0263846.g003
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The NCV predictive errors declined progressively with less variance between outer folds

when the optimal parameters were refined (Table 5). The ranking between the three model

types changed, resulting in the SVM model achieving the lowest predictive error of 2.27 W�kg-

1. In the final round there was no significant difference between the models’ predictive error

(p> 0.860). The LR model achieved marginally the lowest error, but all three were within 0.1

W�kg-1 of one another (Table 6). In many cases, but not all, excluding specific parameters

from the optimisation resulted in more peaked distributions, as can be seen in supplementary

material, S1–S3 Figs.

Discussion

This study developed ML models for estimating peak power in the CMJ from accelerometer

data from a body-worn inertial sensor. We aimed to produce a model with a predictive error

smaller than a typical athlete’s inter-day variability. If that level of accuracy were achieved,

such a field-based system could be used reliably for monitoring athletes’ neuromuscular

power. To this end, robust procedures were implemented to obtain unbiased estimates of how

the models would perform on independent data. The best model achieved a generalised pre-

dictive error of 2.3 W�kg-1 according to NCV and an independent error of 2.0 W�kg-1 with the

holdout data set. In percentage terms, these errors amount to 5.1% and 4.2% of the mean peak

power. These errors are higher than the 3.4% target level for inter-day variability, determined

a priori from three studies [10,60,61], as presented in the introduction. The 3.4% level is

Fig 4. Data parameter distributions across the intermediate models for the LB-CMJNA data set with ensemble

optimal values highlighted. (A) LR model type; (B) SVM model type; (C) GPR model type. Optimal values are shown

by the darker shaded bar for categorical parameters and by a darker vertical line at the peak position for numeric

parameters with that optimal value shown.

https://doi.org/10.1371/journal.pone.0263846.g004
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equivalent to 1.55 W�kg-1 with this data set. Thus, our sensor-based system and model does

not meet the level of accuracy needed for practical day-to-day use.

Although our approach did not produce a sufficiently accurate model, the results are a con-

siderable improvement over previous attempts in the literature. Estimates of peak power based

on jump height had errors of 6.0–16.5% [20–25] while the Newtonian sensor-based calcula-

tions resulted in errors of 10.7–21.2% [28–30]. The lowest error reported in those studies was

for the Canavan-Vescovi equation [21], but it was based on data from only 20 participants. In

subsequent larger studies using the same equation, errors of 2.0%, 25.3% and 27.6% were

reported [23,25,27]. The Sayers equation was the most consistent with errors of 5.3 ± 1.2

W�kg-1 (10.5 ± 4.3%) across six studies [20–25]. These studies did not use similarly robust

methods to estimate the expected error on independent data, as we did in our study, so their

true generalised errors may in fact be higher.

It should also be noted that the performance levels achieved in our study are representative

of those reported in the literature. For example, the CMJNA mean power output of 48.4 W�kg-1

for men in our study compares with 53.6 W�kg-1 for professional rugby players [82], 54 W�kg-1

Fig 5. Model parameter distributions across the intermediate models for the LB-CMJNA data set with ensemble

optimal values highlighted. (A) LR model type; (B) SVM model type; (C) GPR model type. Optimal values are shown

by the darker shaded bar for categorical parameters and by a darker vertical line at the peak position for numeric

parameters with that optimal value shown.

https://doi.org/10.1371/journal.pone.0263846.g005
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for Australian rules football players [9], and 65.1 W�kg-1 for college-level team-sport athletes

[10]. Our female participants’ mean performance of 38.2 W�kg-1 places them in between the

34.8 W�kg-1 reported for college students who played sports recreationally [83] and the 43.4

W�kg-1 achieved by NCAA volleyball players [84].

Conditions influencing the model

Jump type. The errors for the CMJNA were significantly lower than for the CMJA in abso-

lute terms (0.8 W�kg-1), but in relative terms they were much closer (0.5%) (Fig 3A). The addi-

tional degrees of freedom associated with arm swing makes peak power harder to predict, but

only moderately so. It should be noted that these are comparisons between different (opti-

mised) models on different data sets, not comparisons of how the same model performs on dif-

ferent data sets. This reveals the adaptability of model fitting and optimisation, as is reflected

by jump type having only a weak effect on the model and data processing parameters. Despite

the arm swing introducing more degrees of freedom with the possibility of different swing

Fig 6. Aggregated surrogate model partial plots for the data parameters from the LB-CMJNA data set showing the

predicted AM loss at the global minimum. (A) LR model type; (B) SVM model type; (C) GPR model type. The

central blue line is the central SM estimate. The darker shaded area about this line is the SM fitted noise level. The

lighter shaded area covers the standard deviation. Note that for SVM (middle column), the SM range (y-axis) is higher.

https://doi.org/10.1371/journal.pone.0263846.g006
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movement patterns, the models could accommodate the greater complexity. This finding sug-

gests that such a modelling approach may be suitable for estimating performance metrics in

more complex movements.

Fig 7. Aggregated surrogate model partial plots for the model parameters from the LB-CMJNA data set showing

the predicted AM loss at the global minimum. (A) LR model type; (B) SVM model type; (C) GPR model type. The

central blue line is the central SM estimate. The darker shaded area about this line is the SM fitted noise level. The

lighter shaded area covers the standard deviation. Note that for SVM (middle column), the SM range (y-axis) is higher.

https://doi.org/10.1371/journal.pone.0263846.g007

Table 5. Predictive error estimates over progressive optimisations for each model type using the resultant LB sensor for the CMJNA, based on nested cross valida-

tion and the independent holdout test.

RMSE (W�kg-1) LR SVM GPR

NCV– 1st round † 3.50 ± 1.37 3.53 ± 1.44 2.67 ± 0.68

NCV– 2nd round † 3.11 ± 0.89 3.38 ± 2.11 2.59 ± 0.69

NCV– 3rd round † 2.93 ± 0.89 2.44 ± 0.47 2.47 ± 0.49

NCV– 4th round † 2.82 ± 0.87 2.27 ± 0.51 2.38 ± 0.54

Holdout ‡ 1.91 2.02 2.02

† For NCV (Nested Cross Validation) estimates, the mean loss is shown ± standard deviation over 20 outer folds. The standard errors in the final round estimates are

0.19 W�kg-1, 0.12 W�kg-1 and 0.11 W�kg-1, respectively for LR, SVM and GPR.

‡The holdout test has a single error specific to that data set.

https://doi.org/10.1371/journal.pone.0263846.t005

PLOS ONE Determining jumping performance from accelerometer data

PLOS ONE | https://doi.org/10.1371/journal.pone.0263846 February 10, 2022 14 / 25

https://doi.org/10.1371/journal.pone.0263846.g007
https://doi.org/10.1371/journal.pone.0263846.t005
https://doi.org/10.1371/journal.pone.0263846


Sensor location. Placing a sensor on the lower back provided the most accurate estimates

of peak power of the four anatomical locations considered. The LB models’ mean errors were

consistently lower than those based on sensor data from other locations. In biomechanics, the

lower back tends to be used more often for sensor attachment, but it will depend on the appli-

cation in question [66]. In the case of predicting peak power in vertical jumping, having a sen-

sor close to the body’s CM appears to be advantageous, as seen in our results, even though the

CM does not have a fixed anatomical location. In comparison, the Newtonian approaches of

previous investigations using inertial sensors [31–34] rely on the assumption that the sensor’s

movements match those of the body’s CM. Even if those algorithms could perfectly correct for

the sensor’s changing orientation, the resulting peak power estimate would pertain to the

motion of a sensor rather than the body as a whole. The sensor would have a fixed anatomical

location while the body’s CM would move dynamically relative to such a reference point.

Hence, the differences in the trajectories of the body’s CM and the sensor will be a source of

error in Newtonian methods.

A machine learning approach, in contrast, compensates for different sensor positions in the

fitting procedure, determining the best (linear) combination of features to approximate the

outcome variable. Hence, models based on sensor data from other locations, seemingly less

advantageous, were only slightly less accurate. Both the LB and UB sensors detect trunk move-

ment, which makes the largest segmental contribution to the work done and take-off velocity

in a vertical jump [85–87]. However, the same cannot be said for the shank sensors, although

the LS/RS models were as accurate as the UB models. The LS/RS sensors tracked the shanks’

changing inclination, a movement with fewer degrees of freedom. As with the comparison

Table 6. Ensemble optimal parameters over successive optimisations (1st, 2nd, 3rd, 4th) for each model type using the resultant LB sensor for the CMJNA.

LR SVM GPR

Optimisation Round 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

tpre (s) 2.8 2.9 1.9 2.8 1.9 2.7 2.8 1.2 2.9 2.8 2.9 1.2

tpost (s) 2.9 2.8 2.8 2.7 1.8 1.7 1.5 1.2 2.2 2.4 1.2 2.8

ρ (fn�s-1) 9 7 . . . . . . 16 8 . . . . . . 12 10 8 . . .

F 6–4 6–4 6–4 . . . 6–4 6–4 6–4 . . . 6–4 4–2 6–4 . . .

log10 λ 8.8 -9.0 -9.5 . . . -2.4 -3.0 0.8 -9.0 -9.5 -1.7 -9.1 -8.4

NC 21 20 24 . . . 16 20 24 . . . 16 12 23 . . .

Z No . . . . . . . . . No . . . . . . . . . No . . . . . . . . .

R Ridge . . . . . . . . .

S LSq . . . . . . . . .

log10 λLR -4.0 -1.6 . . . -1.0

KSVM Linear Gaussian . . . . . .

log10 BC 5.8 3.1 3.3 . . .

log10 KS 2.4 2.2 . . . . . .

log10 ε -1.5 -0.7 . . . . . .

B Linear None . . . . . .

KGPR Exp Exp . . . . . .

log10 σ -1.3 -0.5 . . . . . .

Successive optimisations progressively involve fewer parameters, narrowing the search and intensifying observations in promising regions. When a parameter’s ‘true’

value has been determined, is it underlined and then held fixed in subsequent optimisations, indicated by the ellipsis. The ‘true’ optimal value is accepted when the

parameter distribution shows a narrowly defined, unambiguous peak.

https://doi.org/10.1371/journal.pone.0263846.t006
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between jump types, this is further evidence of the adaptability of a modelling procedure based

on extracting patterns from the data.

In professional team sports, players often wear an inertial measurement unit on the upper

back, which usually includes a GPS tracker. In principle, such a sensor could be re-purposed

for peak power measurements, which would make it convenient for players and coaches as no

additional setup would be required to attach a second sensor for a jump test. The UB model is

less accurate than its LB equivalent, but the difference is only marginal. If further improve-

ments could be made to feature extraction methods or the modelling procedure, then using

such a sensor-based system for peak power measurement could become a realistic proposition

provided the sensor is well-coupled to the player. Field-based testing of peak power could then

be incorporated into training programmes, provided other limitations can be overcome, allow-

ing many more tests to be conducted, which may in certain applications partly compensate for

the lower level of accuracy compared to the force platform gold standard.

Signal representation. The models based on the resultant signal had marginally lower

errors than their triaxial counterparts. The inertial accelerations would have been primarily

vertical, making the resultant signal a reasonable first approximation. In principle, the triaxial

models had more information, but with many more predictors the model was more prone to

overfitting. Furthermore, the sensor’s changing inclination in the sagittal plane would bias the

accelerations measured along each axis. The baseline gravity vector would shift proportionally

between the sensor’s X- and Z-axes while the body’s inertial acceleration moves in and out of

alignment with those axes. However, orientation correction is not a requirement when using a

pattern-based machine learning approach in our case, in contrast to the Newtonian

approaches discussed above. Our models will have found the best weighting for the FPCs, thus

implicitly compensating for the effects of changing sensor orientation, albeit imperfectly. Since

the CMJ is a well-controlled movement, making it a valid and reliable test [18,88,89], the

changing bias in the inertial accelerations would generally be consistent across jumps. How-

ever, differences in strength, coordination, fatigue, limb lengths and muscle morphology will

account for variations in the movement pattern, limiting the accuracy of the models [90–93].

Whilst IMUs could correct for orientation, they have an inherent lag in responding to changes

of orientation [31], which may limit their suitability for explosive movements. Further research

would be needed to determine whether using IMUs rather than simple accelerometers could

improve the model predictions, as the additional gyroscope data would permit a correction for

sensor orientation [e.g. [94]].

Model type. The final condition was model type where common algorithms were consid-

ered, including parametric (LR) and non-parametric methods (SVM and GPR). After the first

round of optimisation, the GPR appeared to be the best for this application, but further refine-

ments revealed SVM achieved the lowest errors. This indicates that the global optimum for

SVM was harder to find, as may be expected with non-parametric models, which are generally

sensitive to the values of the kernel parameters. SVM had three strong parameters (BC, KS and

ε), all with a continuous range. If one of those parameters was slightly adrift from the true opti-

mum, the errors could be substantially higher. On the other hand, LR and GPR had only had

one strong, real parameter each (λLR and σ, respectively), but more categorical parameters that

were easier to optimise. GPR was less prone to overfitting with its Bayesian approach, choosing

the most likely solution from the distribution of possible fits. In contrast, SVM had a propen-

sity to produce wildly inaccurate predictions if its hyperparameters were chosen poorly, hence

the need to Winsorise the estimates. Furthermore, SVM fitting could occasionally be time-

consuming due to its kernel-type design, as indicated by AM execution times: median 0.187 s,

90% CI [0.095 s, 5.080 s]. The times for LR and GPR were more consistently shorter overall:

0.133 s, [0.079, 0.221] s and 0.185 s, [0.122, 0.283] s for GPR. In summary, SVM optimisation
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was time-consuming and at times unreliable, but it produced the best estimates in the end.

GPR models were more forgiving, less prone to overfitting and easier to work with in practical

terms. Ultimately, if the exploration of parameter space is thorough and properly directed,

which was achieved by narrowing the parameter search ranges, then the challenges of optimi-

sation with these models can be met.

Optimal parameter values

The optimal parameter values provide answers for our third research question on the best data

processing setup. In optimising the time window, the model needs to define a period that

includes all the relevant information for the prediction, but there is a trade-off. Extending the

time window provides more information, but it comes with the risk of overfitting. A longer

period will increasingly encompass periods outside of the jumping movement, especially for

jumps that are performed more quickly than others. In these periods, the only inertial accelera-

tions should be due to body sway in standing. In all cases, the optimal time window extended

beyond take-off to include flight and landing, indicating valuable information in this latter

portion of the signal relating to mechanical power generation and dissipation. The final SVM

model may have outperformed the others because its window [-1.2 s, 1.2 s] was limited to

these more substantial inertial accelerations, making it less prone to overfitting.

The flight time itself may be useful as the first FPC, which had the highest correlation with

peak power, mainly described variations in the timing of the landing impact spike (580 ± 65

ms after take-off compared to an actual flight time according to the VGRF data of 480 ± 66

ms). The second FPC primarily described variations in the impact spike amplitude, indicating

an association with peak power via jump height. The models in our study made more accurate

predictions than the peak power formulae from previous research because using several FPCs

as predictors provides more information than flight time alone. To verify this, we fitted a sim-

ple regression model based on flight time and body mass, the same as those previous peak

power formulae, and obtained a cross-validated RMSE of 3.49 W�kg-1.

The roughness penalty, λ, controls how much the signal is smoothed, but its final optimal

value (< 10−8) was very low (Table 6). In comparison, generalised cross validation, the stan-

dard method of determining the roughness penalty, yielded 102 [42]. Light smoothing pre-

serves the amplitude of sharp peaks, particularly the impact acceleration spike on landing. It

appears the modelling procedure relied partly on reducing the basis function density, ρ, to

control complexity. It was helped by using 6th order b-splines, which made up for the low den-

sity with considerable flexibility, not just from the quintic polynomials but from their high

degree of overlap. The low densities reduced the FPCA computational cost considerably,

which is roughly proportional to the square of the number of basis functions. In summary,

functional smoothing had quite a limited role in controlling complexity. Indeed, it was optimal

to retain a large number of components from FPCA, many of which described very small sig-

nal variations.

Having a long list of potentially complex features appeared to be tolerable because in part

the models had their own ways of regulating complexity. The LR model favoured ridge regres-

sion, which reduced coefficients through the regularisation parameter λLR, diminishing the

influence of some features. The final SVM model had a narrow support vector margin (ε),

facilitated by a high box constraint (BC) or soft margin, making the model more flexible and

less prone to overfitting. At one level, the GPR model used the fitted noise level (σ) of 10−0.5 (~

0.3 W�kg-1), but overfitting was controlled mainly through its Bayesian approach. The other

part of the explanation can be attributed to the unrotated FPCs having an inherent reduction

in amplitude with each successive component. Finally, the optimiser favoured no feature
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standardisation because the influence of higher-order FPCs diminished, thus providing a natu-

ral form of regularisation.

Modelling procedures

Cross validation is widely regarded as an essential element of machine learning, yet there are

comparatively few examples of nested cross validation in the literature. In our study, twice-

repeated 10-fold CV (20 outer folds) produced reasonable estimates of the expected general-

ised error with a standard error of ~ 0.15 W�kg-1. More iterations could refine this estimate,

but it is already small enough to make no meaningful difference in practice. However, the

expected value should not obscure the fact that there was considerable variation in error

between folds, indicating a high degree of model sensitivity to the data. It follows that the error

for any given jump is somewhat uncertain. Only in aggregate with the large samples can model

performance be assessed with the precision reported above.

The statistical model comparing different conditions could only account for 19% of the

outer validation errors. The unexplained variance can be attributed to the subsampling varia-

tion of the CV inner loop and to differences in the distributions between the inner training set

and the outer validation set. The variance could be reduced by averaging over more CV repeti-

tions [62,57,95,96], but that would come with a higher computational cost. For example, the

AM loss with two-fold CV without repetition had a noise level of 0.577 W�kg-1, while five

repeats reduced noise to 0.258 W�kg-1, but the execution time rose by a factor of 4.1.

Optimising a noisy objective function would typically be the task of a Bayesian optimiser.

However, although the search directed by its expected-improvement algorithm (or similar) is

highly efficient, it comes with a high overhead that rises steeply as more observations are

added, as others have reported [97]. We found MATLAB’s bayesopt optimiser exceeded the

AM cost by a factor of 10 after just 50 iterations. Researchers have previously investigated

more efficient Bayesian alternatives, but the overhead remains significant [98–100]. The over-

head with our method, including SM fitting and PSO, was only 3.5% of the total execution

time, allowing a high proportion of computing resources to be devoted to the search.

Limitations

The models depended on accelerometer signals being aligned perfectly with take-off, which

had been achieved by referring to the synchronised VGRF data. If an accelerometer-based sys-

tem were to be implemented, it would have to be self-sufficient by detecting take-off from the

accelerometer data alone. That would introduce an alignment error, which could potentially

reduce the effectiveness of FPCA, depending on the algorithm’s accuracy [42]. Algorithms for

estimating CMJ flight time from body-worn inertial sensors have errors of 21–37 ms

[34,101,102]. Assuming the take-off and landing detection errors have identical normal distri-

butions, the take-off errors would be 15–26 ms. Further research is needed to develop a suit-

able algorithm and quantify its effect on the AM validation error.

FPCA as a feature extraction method is based on a linear decomposition that requires more

components to represent a pattern than would otherwise be the case with nonlinear represen-

tations, such as those obtained using autoencoders [103]. Using such feature encodings may

improve the models, although it may be more appropriate to use a second neural network to

make the performance predictions. Such an approach may work well in more complex situa-

tions where athletic movements have more degrees of freedom. What our study has shown is

that reasonably accurate estimates can be obtained using linear feature representations pro-

vided the movement is carefully controlled in a test environment.
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Finally, the NCV error estimates assumed independent, identically distributed data, an

assumption that is common in machine learning. Were the model applied to a new cohort

with a different peak power distribution to the one used here, the errors would have a different

spread making the RMSE perhaps higher or lower. This can be seen in the holdout errors

where the LR model outperformed the other two and its NCV estimate. Recruiting participants

from a range of sports partly addressed this as it created a heterogeneous data set without

being specific to a single cohort. A replication study evaluating the same methodology with dif-

ferent sensors, researchers and participants would contribute greatly to the ecological validity

of the research.

Conclusions

The final models developed in this study using accelerometer data from body-worn sensors

predicted peak power in the CMJNA more accurately than has hitherto been achieved by a

field-based system. The error estimates reported above can be considered realistic owing to the

robust procedures implemented. However, with errors of 2.3 W�kg-1 or 5.1%, they do not

reach the level of accuracy desired for practical use. Nevertheless, with further developments,

this gap may be bridged such that a valuable single-sensor system could be applied for certain

practical applications. The models themselves were based on FPCA, which has been successful

in biomechanics, with optimisation of data processing parameters, as well as the model’s

hyperparameters. We believe this is the first biomechanics study to take this comprehensive

approach to optimisation. In yielding a small number of features characterising time series

data, FPCA allows classical machine learning models to be employed. It would be suitable

where there is a natural point of alignment, such as jump take-off, so the modes of variation

become apparent without further data manipulation. It is a modelling approach that has

potentially wider applications in biomechanics as it has been shown to be adaptable to differ-

ent data sets.

Supporting information

S1 Fig. LR model optimal parameter distributions over four successive optimisations.

Parameters may be eliminated in successive rounds if there is a clear preference for an optimal

value. Alternatively, the range of possible values may be reduced. In doing so, subsequent dis-

tributions tend to have more prominent peaks, but not always, as with the time window

parameters. Abbreviations. Vertical axes: Proportion = Proportion (%); Density = Probability

Density Function × 103. Standardise Axis: N = No; Y = Yes. Regularisation Axis: L = Lasso;

R = Ridge. LR Solver Axis: S = SVM; L = Least Squares.

(TIF)

S2 Fig. SVM model optimal parameter distributions over four successive optimisations.

Parameters may be eliminated in successive rounds if there is a clear preference for an optimal

value. Alternatively, the range of possible values may be reduced. Abbreviations. Vertical axes:

Proportion = Proportion (%); Density = Probability Density Function × 103. Standardise Axis:

N = No; Y = Yes. SVM Kernel Axis: L = Linear; G = Gaussian; P = Polynomial.

(TIF)

S3 Fig. GPR model optimal parameter distributions over four successive optimisations.

Parameters may be eliminated in successive rounds if there is a clear preference for an optimal

value. Alternatively, the range of possible values may be reduced. Abbreviations. Vertical axes:

Proportion = Proportion (%); Density = Probability Density Function × 103. GPR Basis Axis:

N = None; C = Constant; L = Linear; RQ = Rational Quadratic. GPR Kernel Axis:
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E = Exponential; SE = Squared Exponential; M3 = Matérn 3/2; M5 = Matérn 5/2;

RQ = Rational Quadratic. Standardise Axis: N = No; Y = Yes.

(TIF)

S4 Fig.

(TIF)
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