6,888 research outputs found

    High level sill and dyke intrusions initiated from rapidly buried mafic lava flows in scoria cones of Tongoa, Vanuatu (New Hebrides), South Pacific

    Get PDF
    Scoria cones are generally considered to grow rapidly in days to weeks or months. During their growth lava flows may be fed onto the cone surface from lava-lake breaches, or form by coalescence of spatter; such flows are preserved interbedded with scoria lapilli and ash beds. On Tongoa, an island of the Vanuatu volcanic arc in the South Pacific, a series of scoria cones developed during the Holocene, forming a widespread monogenetic volcanic field. Half sections of scoria cones along the coast expose complex interior architecture cone architectures. On the western side of Tongoa Island a scoria cone remnant with steeply crater-ward dipping beds of scoria ash and lapilli contains various dm-to-m thick lava flows, which are connected by irregular dikes cutting obliquely across the beds of the cone. The lava flows are coherent igneous bodies with well-developed flow top and basal breccias. The lavas interbedded with the cone-forming layers are part of a larger (up to 7 m thick) body that is connected to dykes and sills of irregular geometries that intrude the cone's pyroclastic layers. This 3D relationship suggests that the lava flows were buried quickly under the accumulating scoriaceous deposits. This allowed subsequent escape of magma from the fluid interiors of flows, with the magma then squeezed upward or laterally into the accumulating pyroclastic pile. Movement of the pile above the partly mobile lava, and potential destabilisation during intrusion into the pile of lava squeezed from the flows, may signal the onset of localised cone failures, and could be implicated in development of major cone breaches (e.g. Paricutin)

    Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields

    Get PDF
    Individual volcanoes of continental monogenetic volcanic fields are generally presumed to erupt single magma batches during brief eruptions. Nevertheless, in two unrelated volcanic fields (the Waipiata volcanic field, New Zealand, and the Miocene-Pliocene volcanic field in western Hungary), we have identified pronounced and systematic compositional differences among products of individual volcanoes. We infer that this indicates a two-stage process of magma supply for these volcanoes. Each volcano records: (1) intrusion of a basanitic parent magma to lower- to mid-crustal levels and its subsequent fractionation to form a tephritic residual melt;, (2) subsequent transection of this reservoir by a second batch of basanitic melt, with tephrite rising to the surface at the head of the propagating basanite dyke. Eruption at the surface then yields initial tephrite, typically erupted as pyroclasts, followed by eruption and shallow intrusion of basanite from deeper in the dyke. By analogy with similar tephrite-basanite eruptions along rift zones of intraplate ocean-island volcanoes, we infer that fractionation to tephrite would have required decades to centuries. We conclude that the two studied continental monogenetic volcanic fields demonstrate a consistent history of early magmatic injections that fail to reach the surface, followed by capture and partial eruption of their evolved residues in the course of separate and significantly later injections of basanite that extend to the surface and erupt. This systematic behaviour probably reflects the difficulty of bringing small volumes of dense, primitive magma to the surface from mantle source regions. Ascent through continental crust is aided by the presence in the dyke head of buoyant tephrite captured during transection of the earlier-emplaced melt bodies

    Quantum process tomography of a controlled-NOT gate

    Get PDF
    We demonstrate complete characterization of a two-qubit entangling process - a linear optics controlled-NOT gate operating with coincident detection - by quantum process tomography. We use maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows accurate prediction of the operation of the gate for arbitrary input states, and calculation of gate performance measures such as the average gate fidelity, average purity and entangling capability of our gate, which are 0.90, 0.83 and 0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved gate operation. Figure quality slightly reduced for arXi

    Spin-tunnel investigation of a 1/15-scale model of an Australian trainer airplane

    Get PDF
    An investigation was conducted in the Langley Spin Tunnel of the spin and spin-recovery characteristics of a 1/15-scale model of an Australian trainer airplane. The invesigation included erect and inverted spins; configuration variables such as a long tail, fuselage strakes, 20 deg. elevator cutouts, and rudder modifications; and determination of the parachute size for emergency spin recovery. Also included in the investigation were wing leading-edge modifications to evaluate Reynolds number effects. Results indicate that the basic configuration will spin erect at an angle of attack of about 63 deg. at about 2 to 2.3 seconds per turn. Recovery from this spin was unsatisfactory by rudder reversal or by rudder reversal and ailerons deflected to full with the spin. The elevators had a pronounced effect on the recovery characteristics. The elevators-down position was very adverse to recoveries, whereas the elevators-up position provided favorable recovery effects. Moving the vertical tail aft (producing a long tail configuration) improved the spin characteristics, but the recoveries were still considered marginal. An extension to the basic rudder chord and length made a significant improvement in the spin and recovery characteristics. Satisfactory recoveries were obtained by deflecting the rudder to full against the spin and the elevators and ailerons to neutral

    Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    Get PDF
    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here we combine Atomic Force Microscopy based force spectroscopy with Fluorescence Microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, DRG neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons

    The TIGRE gamma-ray telescope

    Get PDF
    TIGRE is an advanced telescope for gamma-ray astronomy with a few arcmin resolution. From 0.3 to 10 MeV it is a Compton telescope. Above 1 MeV, its multi-layers of double sided silicon strip detectors allow for Compton recoil electron tracking and the unique determination for incident photon direction. From 10 to 100 MeV the tracking feature is utilized for gamma-ray pair event reconstruction. Here we present TIGRE energy resolutions, background simulations and the development of the electronics readout system

    A systematic review of patient reported outcome measures (PROMs) used in child and adolescent burn research

    Get PDF
    Crown Copyright © 2014 Published by Elsevier Ltd and ISBI. All rights reserved. Introduction: Patient reported outcome measures (PROMs) can identify important information about patient needs and therapeutic progress. The aim of this review was to identify the PROMs that are being used in child and adolescent burn care and to determine the quality of such scales. Methods: Computerised and manual bibliographic searches of Medline, Social Sciences Index, Cinahl, Psychinfo, Psycharticles, AMED, and HAPI, were used to identify Englishlanguage articles using English-language PROMs from January 2001 to March 2013. The psychometric quality of the PROMs was assessed. Results: 23 studies met the entry criteria and identified 32 different PROMs (31 generic, 1 burns-specific). Overall, the psychometric quality of the PROMs was low; only two generic scales (the Perceived Stigmatisation Questionnaire and the Social Comfort Scale) and only one burns-specific scale (the Children Burn Outcomes Questionnaire for children aged 5-18) had psychometric evidence relevant to this population. Conclusions: The majority of PROMs did not have psychometric evidence for their use with child or adolescent burn patients. To appropriately identify the needs and treatment progress of child and adolescent burn patients, new burns-specific PROMs need to be developed and validated to reflect issues that are of importance to this population

    WTEC panel report on European nuclear instrumentation and controls

    Get PDF
    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology

    Maar-diatreme geometry and deposits: Subsurface blast experiments with variable explosion depth

    Get PDF
    Basaltic maar-diatreme volcanoes, which have craters cut into preeruption landscapes (maars) underlain by downward-tapering bodies of fragmental material commonly cut by hypabyssal intrusions (diatremes), are produced by multiple subsurface phreatomagmatic explosions. Although many maar-diatremes have been studied, the link between explosion dynamics and the resulting deposit architecture is still poorly understood. Scaled experiments employed multiple buried explosions of known energies and depths within layered aggregates in order to assess the effects of explosion depth, and the morphology and compaction of the host on the distribution of host materials in resulting ejecta, the development of subcrater structures and deposits, and the relationships between them. Experimental craters were 1–2 m wide. Analysis of high-speed video shows that explosion jets had heights and shapes that were strongly influenced by scaled depth (physical depth scaled against explosion energy) and by the presence or absence of a crater. Jet properties in turn controlled the distribution of ejecta deposits outside the craters, and we infer that this is also reflected in the diverse range of deposit types at natural maars. Ejecta were dominated by material that originated above the explosion site, and the shallowest material was dispersed the farthest. Subcrater deposits illustrate progressive vertical mixing of host materials through successive explosions. We conclude that the progressive appearance of deeper-seated material stratigraphically upward in deposits of natural maars probably records the length and time scale for upward mixing through multiple explosions with ejection by shallow blasts, rather than progressive deepening of explosion sites in response to draw down of aquifers
    • …
    corecore