1,662 research outputs found

    Use of the Extended Kalman Filter for State Dependent Drift Estimation in Weakly Nonlinear Sensors

    No full text
    A number of mechanisms are responsible for the generation of reversible or irreversible drift in the response of a sensor. In this letter, we discuss three approaches for the identification of reversible state dependent drift in sensors through the use of the Extended Kalman Filter. We compare their performance by simulation and demonstrate their validity by estimating the drift of an accelerometer, modeled as a weakly nonlinear system

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    Boosting Higgs CP properties via VH Production at the Large Hadron Collider

    Get PDF
    We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a bb pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately.Comment: 5 pages, 3 figures. v2: two references added and typo correcte

    Agent-Based Simulations for Project Management

    Get PDF
    Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques

    A global fit of top quark effective theory to data

    Get PDF
    In this paper we present a global fit of beyond the Standard Model (BSM) dimension six operators relevant to the top quark sector to currently available data. Experimental measurements include parton-level top-pair and single top production from the LHC and the Tevatron. Higher order QCD corrections are modelled using differential and global K-factors, and we use novel fast-fitting techniques developed in the context of Monte Carlo event generator tuning to perform the fit. This allows us to provide new, fully correlated and model-independent bounds on new physics effects in the top sector from the most current direct hadron-collider measurements in light of the involved theoretical and experimental systematics. As a by-product, our analysis constitutes a proof-of-principle that fast fitting of theory to data is possible in the top quark sector, and paves the way for a more detailed analysis including top quark decays, detector corrections and precision observables.Comment: Additional references and preprint code added. Minor error in generation of plots fixed, no conclusions affecte

    Crisis and Non-Crisis Short Selling and Bank Enforcement Actions

    Get PDF
    Employing standard informed trading intuition, we develop testable hypotheses regarding short selling before and after bank enforcement action (EA) initiations. For U.S.-listed bank firm data for 2007 to 2012, we find strong support for differentiated short seller activity and skill in crisis versus non-crisis periods. In financial crises, short sellers predominantly position prior to EAs. The EA initiations then act as information-homogenizing and profit-taking events reducing incentives to remain positioned. In contrast, EAs in non-crisis periods appear to serve as wake-up calls that attract additional short selling. Our findings offer potentially important insights for regulators considering short sellers’ reactions to EA announcements in general, during financial crises, and when not experiencing a broad financial crisis

    Results from TopFitter

    Get PDF
    We discuss a global fit of top quark BSM couplings, phrased in the model-independent language of higher-dimensional effective operators, to the currently available data from the LHC and Tevatron. We examine the interplay between inclusive and differential measurements, and the complementarity of LHC and Tevatron results. We conclude with a discussion of projections for improvement over LHC Run II.Comment: 5 pages, 4 figures, proceedings of the 9th International Workshop on the CKM Unitarity Triangle, 28 November - 3 December 2016, Tata Institute for Fundamental Research (TIFR), Mumbai, Indi

    Stratigraphy and structure of the Horton Group, Lochaber-Mulgrave area, northern mainland Nova Scotia

    Get PDF
    The Lochaber-Mulgrave area of northern mainland Nova Scotia is underlain by rocks of the Late Devonian - Early Carboniferous Horton Group, in faulted contact with older Devonian and Silurian rocks to the south and west, and younger Carboniferous rocks to the north and east. The Horton Group is divided into (from oldest to youngest) the Clam Harbour River, Tracadie Road, Caledonia Mills, and Steep Creek formations, with a total thickness of at least 4000 m. These units were deposited in a variety of braided fluvial and shallow to deep lacustrine environments, and show lithological and stratigraphic similarities to the Horton Group elsewhere in Nova Scotia. Sparse palaeonto-logical data from macrofossils and spores indicate an age range from Famennian to late Tournaisian. Compared to elsewhere in Nova Scotia, the Horton Group in the Lochaber-Mulgrave area is more deformed and metamorphosed, especially in the southern part of the area near the Roman Valley Fault. The time of regional deformation and meta-morphism is constrained to ca. 340– 335 Ma by whole-rock 40Ar/39Ar dating of slate in the Clam Harbour River and Tracadie Road formations. Regional deformation and metamorphism may have resulted from burial by older rocks of the Guysborough block, thrust over the Horton Group in the Lochaber-Mulgrave area from the south as a result of transpression at a restraining bend along the Chedabucto-Roman Valley fault system during juxtaposition of the Avalon and Meguma terranes. RÉSUMÉ Le secteur de Lochaber-Mulgrave dans le nord de l'intérieur de la Nouvelle-Écosse repose sur des roches du groupe du Dévonien tardif au Carbonifère précoce de Horton, en contact faillé avec des roches du Dévonien et du Silurien au sud et à l'ouest, et avec des roches carbonifères au nord et à l'est. Le groupe de Horton se subdivise en (de la plus ancienne à la plus récente) formations de Clam Harbour River, de Tracadie Road, de Caledonia Mills et de Steep Creek, d'une épaisseur totale d'au moins 4 000 mètres. Ces unités se sont déposées au sein de divers environnements lacustres allant de peu profonds à profonds et d'environnements fluviaux anastomosés; elles présentent des similarités lithologiques et stratigraphiques avec le groupe de Horton ailleurs en Nouvelle-Écosse. Des données paléontologiques éparses tirées de macrofossiles et de spores révèlent une fourchette d'âges du Famennien au Tournaisien tardif. Comparativement aux autres régions de la Nouvelle-Écosse, le groupe de Horton dans le secteur de Lochaber-Mulgrave est plus déformé et métamorphisé, en particulier dans la partie méridionale du secteur, près de la faille de la vallée Roman. Le moment de la déformation et du métamorphisme régionaux se trouve restreint à environ 340-335 Ma par la datation 40Ar/39Ar de roche totale de l'ardoise dans les formations de Clam Harbour River et de Tracadie Road. La déformation et le métamorphisme régionaux pourraient avoir découlé de l'enfouissement de roches plus anciennes du bloc de Guysborough, qui chevauche le groupe de Horton dans le secteur de Lochaber-Mulgrave à partir du sud, par suite d'une transpression dans une inflexion de retenue le long du système de failles de Chedabucto-vallée Roman pendant la juxtaposition des terranes d'Avalon et de Megum
    corecore