3,592 research outputs found

    Control of Variable Watermilfoil in Bashan Lake, CT with 2,4-D: Monitoring of Lake and Well Water.

    Get PDF
    Variable watermilfoil (Myriophyllum heterophyllum Michx.) has recently become a problem in Bashan Lake, East Haddam, CT, USA. By 1998, approximately 4 ha of the 110 ha lake was covered with variable watermilfoil. In 1999, the milfoil was spot treated with Aquacide®, an 18% active ingredient of the sodium salt of 2,4-D [(2,4-dichlorophenoxy) acetic acid], applied at a rate of 114 kg/ha. Aquacide® was used because labeling regarding domestic water intakes and irrigation limitations prevented the use of Navigate® or AquaKleen®, a 19% active ingredient of the butoxyethyl ester of 2,4-D. Variable watermilfoil was partially controlled in shallow protected coves but little control occurred in deeper more exposed locations. 2,4-D levels in the treatment sites were lower than desired and offsite dilution was rapid. In 2000, the United States Environmental Protection Agency (USEPA) issued a special local need (SLN) registration to allow the use of Navigate ® or AquaKleen® in lakes with potable and irrigation water intakes. Navigate® was applied at a rate of 227 kg/ha to the same areas as treated in 1999. An additional 2 ha of variable watermilfoil was treated with Navigate® in 2001, and 0.4 ha was treated in mid-September. Dilution of the 2,4-D ester formulation to untreated areas was slower than with the salt formulation. Concentrations of 2,4-D exceeded 1000 μg/ L in several lake water samples in 2000 but not 2001. Nearly all of the treated variable watermilfoil was controlled in both years. The mid-September treatment appeared as effective as the spring and early summer treatments. Testing of homeowner wells in all 3 years found no detectable levels of 2,4-D.(PDF contains 8 pages.

    Defining the gap between research and practice in public relations programme evaluation - towards a new research agenda

    Get PDF
    The current situation in public relations programme evaluation is neatly summarized by McCoy who commented that 'probably the most common buzzwords in public relations in the last ten years have been evaluation and accountability' (McCoy 2005, 3). This paper examines the academic and practitioner-based literature and research on programme evaluation and it detects different priorities and approaches that may partly explain why the debate on acceptable and agreed evaluation methods continues. It analyses those differences and proposes a research agenda to bridge the gap and move the debate forward

    Rocket Plume Scaling for Orion Wind Tunnel Testing

    Get PDF
    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies

    Novel Methods for Measuring the Thermal Diffusivity and the Thermal Conductivity of a Lithium-Ion Battery

    Get PDF
    Thermal conductivity is a fundamental parameter in every battery pack model. It allows for the calculation of internal temperature gradients which affect cell safety and cell degradation. The accuracy of the measurement for thermal conductivity is directly proportional to the accuracy of any thermal calculation. Currently the battery industry uses archaic methods for measuring this property which have errors up to 50 %. This includes the constituent material approach, the Searle’s bar method, laser/Xeon flash and the transient plane source method. In this paper we detail three novel methods for measuring both the thermal conductivity and the thermal diffusivity to within 5.6 %. These have been specifically designed for bodies like lithium-ion batteries which are encased in a thermally conductive material. The novelty in these methods comes from maintaining a symmetrical thermal boundary condition about the middle of the cell. By using symmetric boundary conditions, the thermal pathway around the cell casing can be significantly reduced, leading to improved measurement accuracy. These novel methods represent the future for thermal characterisation of lithium-ion batteries. Continuing to use flawed measurement methods will only diminish the performance of battery packs and slow the rate of decarbonisation in the transport sector

    Preliminary Experience With 3-Tesla MRI and Cushing\u27s Disease

    Get PDF
    Because radiographic visualization of a pituitary microadenoma is frequently difficult, we hypothesized that microadenomas associated with Cushing\u27s disease may be better resolved and localized via acquisition with 3-Tesla (3T) compared with standard 1.5-Tesla (1.5T) magnetic resonance imaging (MRI). Five patients (four females, one male; age range, 14 to 50 years old) with endocrine and clinical confirmation of Cushing\u27s disease underwent 1.5T and 3T MRI and corticotropin-releasing hormone stimulation/inferior petrosal sinus sampling (IPSS) as part of their preoperative evaluation. All patients underwent a transnasal trans-sphenoidal pituitary adenomectomy. In two cases, tumor could not be localized on either 1.5T or 3T MRI on the initial radiologist\u27s review. In two other cases, the 1.5T images delineated the tumor location, but it was more clearly defined on 3T MRI. In a fifth case, the 1.5T MRI showed a probable right-sided adenoma. However, on both 3T MRI and at surgical exploration the tumor was localized on the left side. Therefore, in three of five cases, 3T MRI either more clearly defined tumors seen on 1.5T MRI or predicted the location of tumor contrary to the 1.5T images. IPSS identified the correct side of the tumor in two patients, an incorrect location in two patients, and was indeterminate in one patient. In certain cases 3T MRI is a new tool that may ameliorate imaging difficulties associated with adrenocorticotrophic hormone-secreting pituitary adenomas. Its role in the diagnostic evaluation of Cushing\u27s disease will be better defined with further experience. Copyright © 2007 by Thieme Medical Publishers, Inc

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Detection of a redshift 3.04 filament

    Get PDF
    The filamentary structure of the early universe has until now only been seen in numerical simulations. Despite this lack of direct observational evidence, the prediction of early filamentary structure formation in a Cold Dark Matter dominated universe has become a paradigm for our understanding of galaxy assembly at high redshifts. Clearly observational confirmation is required. Lyman Break galaxies are too rare to be used as tracers of filaments and we argue that to map out filaments in the high z universe, one will need to identify classes of objects fainter than those currently accessible via the Lyman Break technique. Objects selected via their Ly-alpha emission, and/or as DLA absorbers, populate the faintest accessible part of the high redshift galaxy luminosity function, and as such make up good candidates for objects which will map out high redshift filaments. Here we present the first direct detection of a filament (at z=3.04) mapped by those classes of objects. The observations are the deepest yet to have been done in Ly-alpha imaging at high redshift, and they reveal a single string of proto-galaxies spanning about 5 Mpc (20 Mpc comoving). Expanding the cosmological test proposed by Alcock & Paczynski (1979), we outline how observations of this type can be used to determine Omega_Lambda at z=3.Comment: 5 pages, LaTeX, 3 PostScript figures; Accepted for publication in A&A-Letter
    corecore