828 research outputs found
Recommended from our members
Phospholipid fatty acid analysis as part of the Yucca Mountain Project. Final report
In support of the Yucca Mountain subsurface microbial characterization project phospholipid fatty acid (PLFA) analyses for viable microbial biomass, community composition and nutritional status were performed. Results showed a positive correlation between a decrease in viable biomass and increase in depth with the lowest biomass values being obtained from the Topopah Spring geologic horizon. A plot of the ratio of non-viable (diglyceride fatty acids) to viable (PLFA) cells also showed the lowest values to derive from the Topopah Spring horizon. Estimations of microbial community composition, made from the patterns of PLFA recovered from the sediment samples, revealed similarities between samples collected within the same geologic horizons: Tiva Canyon, Pre-Pah Canyon and Topopah Spring. Results indicated the presence of mixed communities composed of gram positive, gram negative, actinomycete and obligate anaerobic bacteria. Culturable organisms, recovered from similar sediments, were representative of the same bacterial classifications although gram positive bacterial isolates typically outnumbered gram negative isolates. Within the gram negative bacterial community, corroborative indicators of physiological stress were apparent in the Topopah Spring horizon
Recommended from our members
Quantitative comparison of the in situ microbial communities in different biomes
A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedly documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography
Recommended from our members
Predictions of acoustic signals from explosions above and below the ocean surface: source region calculations
In support of the Comprehensive Test Ban, research is underway on the long range propagation of signals from nuclear explosions in the deep underwater sound (SOFAR) channel. This first phase of our work at LLNL on signals in the source regions considered explosions in or above the deep (5000 m) ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on CALE, a two-dimensional hydrodynamics code developed at LLNL by Robert Tipton, were linked at a few hundred milliseconds to a version of NRL`s weak shock code, NPE, which solves the nonlinear progressive wave equation. The wave propagation simulation was performed down to 5000 m depth and out to 10,000 m range. We have developed a procedure to convert the acoustic signals at 10 km range into `starter fields` for calculations on a linear acoustics code which will extend the propagation to ocean basin distances. Recently we have completed calculations to evaluate environmental effects (shallow water, bottom interactions) on signal propagation. We compared results at 25 km range from three calculations of the same I kiloton burst (50 m height-of-burst) in three different environments, namely, deep water, shallow water, and a case with shallow water sloping to deep water. Several results from this last `sloping bottom` case will be 2016 discussed below. In this shallow water study, we found that propagation through shallow water complicates and attenuates the signal; the changes made to the signal may impact detection and discrimination for bursts in some locations
Recommended from our members
Sonoluminescence, shock waves, and micro-thermonuclear fusion
We have performed numerical hydrodynamic simulations of the growth and collapse of a sonoluminescing bubble in a liquid. Our calculations show that spherically converging shock waves are generated during the collapse of the bubble. The combination of the shock waves and a realistic equation of state for the gas in the bubble provides an explanation for the measured picosecond optical pulse widths and indicates that the temperatures near the center of the bubble may exceed 3O eV. This leads naturally to speculation about obtaining micro-thermonuclear fusion in a bubble filled with deuterium (D{sub 2}) gas. Consequently, we performed numerical simulations of the collapse of a D{sub 2} bubble in D{sub 2}0. A pressure spike added to the periodic driving amplitude creates temperatures that may be sufficient to generate a very small, but measurable number of thermonuclear D-D fusion reactions in the bubble
Controls on andesitic glaciovolcanism at ice-capped volcanoes from field and experimental studies
Glaciovolcanic deposits at Tongariro and Ruapehu volcanoes, New Zealand, represent diverse styles of interaction between wet-based glaciers and andesitic lava. There are ice-confined lavas, and also hydroclastic breccia and subaqueous pyroclastic deposits that formed during effusive and explosive eruptions into meltwater beneath the glacier; they are rare among globally reported products of andesitic glaciovolcanism. The apparent lack of hydrovolcanically fragmented andesite at ice-capped volcanoes has been attributed to a lack of meltwater at the interaction sites because either the thermal characteristics of andesite limit meltwater production or meltwater drains out through leaky glaciers and down steep volcano slopes. We used published field evidence and novel, dynamic andesite-ice experiments to show that, in some cases, meltwater accumulates under glaciers on andesitic volcanoes and that meltwater production rates increase as andesite pushes against an ice wall. We concur with models for eruptions beneath ice sheets showing that the glacial conditions and pre-eruption edifice morphology are more important controls on the style of glaciovolcanism and its products than magma composition and the thermal properties of magmas. Glaciovolcanic products can be useful proxies for paleoenvironment, and the range of andesitic products and the hydrological environments in which andesite erupts are greater than hitherto appreciated
Critical Exponents for Three-Dimensional Superfluid--Bose-Glass Phase Transition
The critical phenomenon of the zero temperature superfluid--Bose-glass phase
transition for hard-core bosons on a three-dimensional disordered lattice is
studied using a quantum real-space renormalization-group method. The
correlation-length exponent and the dynamic exponent z are computed. The
critical exponent z is found to be 2.5 for compressible states and 1.3 for
incompressible states. The exponent is shown to be insensitive to z as
that in the two-dimensional case, and has value roughly equal to 1.Comment: 11 pages, REVTE
Eruptions of Magnetic Ropes in Two Homologous Solar Events on 2002 June 1 and 2: a Key to Understanding of an Enigmatic Flare
The goal of this paper is to understand the drivers, configurations, and
scenarios of two similar eruptive events, which occurred in the same solar
active region 9973 on 2002 June 1 and 2. The June 2 event was previously
studied by Sui, Holman, and Dennis (2006, 2008), who concluded that it was
challenging for popular flare models. Using multi-spectral data, we analyze a
combination of the two events. Each of the events exhibited an evolving
cusp-like feature. We have revealed that these apparent ``cusps'' were most
likely mimicked by twisted magnetic flux ropes, but unlikely to be related to
the inverted Y-like magnetic configuration in the standard flare model. The
ropes originated inside a funnel-like magnetic domain whose base was bounded by
an EUV ring structure, and the top was associated with a coronal null point.
The ropes appear to be the major drivers for the events, but their rise was not
triggered by reconnection in the coronal null point. We propose a scenario and
a three-dimensional scheme for these events in which the filament eruptions and
flares were caused by interaction of the ropes.Comment: 22 pages, 11 figure
Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol
9 pags.; 5 figs.; 6 tabs.Differential and integral cross section measurements, for incident electron energies in the 20-50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results. © 2014 AIP Publishing LLC.Spanish (Ministerio de Economia y Competitividad under Project FIS2012-31230) funding agencies who financially supported various aspects of this work.Peer Reviewe
Recommended from our members
Phospholipid anaysis of extant microbiota for monitoring in situ bioremediation effectiveness
Two sites undergoing bioremediation were studied using the signature lipid biomarker (SLB) technique. This technique isolates microbial lipid moieties specifically related to viable biomass and to both prokaryotic and eukaryotic biosynthetic pathways. The first site was a South Pacific atoll heavily contaminated with petroleum hydrocarbons. The second site was a mine waste reclamation area. The SLB technique was applied to quantitate directly the viable biomass, community structure, and nutritional/physiological status of the microbiota in the soils and subsurface sediments of these sites. All depths sampled at the Kwajalein Atoll site showed an increase in biomass that correlated with the co-addition of air, water, and nutrients. Monoenoic fatty acids increased in abundance with the nutrient amendment, which suggested an increase in gram-negative bacterial population. Ratios of specific phospholipid fatty acids indicative of nutritional stress decreased with the nutrient amendment. Samples taken from the mine reclamation site showed increases in total microbial biomass and in Thiobacillus biomass in the plots treated with lime and bactericide, especially when a cover soil was added. The plot treated with bactericide and buffered lime without the cover soil showed some decrease in Thiobacillus numbers, but was still slightly higher than that observed in the control plots
Correlation Amplitudes for the spin-1/2 XXZ chain in a magnetic field
We present accurate numerical estimates for the correlation amplitudes of
leading and main subleading terms of the two- and four-spin correlation
functions in the one-dimensional spin-1/2 XXZ model under a magnetic field.
These data are obtained by fitting the correlation functions, computed
numerically with the density-matrix renormalization-group method, to the
corresponding correlation functions in the low-energy effective theory. For
this purpose we have developed the Abelian bosonization approach to the spin
chain under the open boundary conditions. We use the numerical data of the
correlation amplitudes to quantitatively estimate spin gaps induced by a
transverse staggered field and by exchange anisotropy.Comment: 18 pages, 6 figures, 1 tabl
- …