32 research outputs found

    Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Get PDF
    As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009) using Japanese Earth Resources Satellite (JERS-1) data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation) and locational information (latitude, longitude) to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas) to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009): (1) more consistent training data in upland areas; (2) better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3) a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles), which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website

    Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Full text link
    As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009) using Japanese Earth Resources Satellite (JERS-1) data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation) and locational information (latitude, longitude) to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas) to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009): (1) more consistent training data in upland areas; (2) better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3) a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles), which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website

    Accuracy and Usability of a Novel Algorithm for Detection of Irregular Pulse Using a Smartwatch Among Older Adults: Observational Study

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is often paroxysmal and minimally symptomatic, hindering its diagnosis. Smartwatches may enhance AF care by facilitating long-term, noninvasive monitoring. OBJECTIVE: This study aimed to examine the accuracy and usability of arrhythmia discrimination using a smartwatch. METHODS: A total of 40 adults presenting to a cardiology clinic wore a smartwatch and Holter monitor and performed scripted movements to simulate activities of daily living (ADLs). Participants\u27 clinical and sociodemographic characteristics were abstracted from medical records. Participants completed a questionnaire assessing different domains of the device\u27s usability. Pulse recordings were analyzed blindly using a real-time realizable algorithm and compared with gold-standard Holter monitoring. RESULTS: The average age of participants was 71 (SD 8) years; most participants had AF risk factors and 23% (9/39) were in AF. About half of the participants owned smartphones, but none owned smartwatches. Participants wore the smartwatch for 42 (SD 14) min while generating motion noise to simulate ADLs. The algorithm determined 53 of the 314 30-second noise-free pulse segments as consistent with AF. Compared with the gold standard, the algorithm demonstrated excellent sensitivity (98.2%), specificity (98.1%), and accuracy (98.1%) for identifying irregular pulse. Two-thirds of participants considered the smartwatch highly usable. Younger age and prior cardioversion were associated with greater overall comfort and comfort with data privacy with using a smartwatch for rhythm monitoring, respectively. CONCLUSIONS: A real-time realizable algorithm analyzing smartwatch pulse recordings demonstrated high accuracy for identifying pulse irregularities among older participants. Despite advanced age, lack of smartwatch familiarity, and high burden of comorbidities, participants found the smartwatch to be highly acceptable

    Family physicians\u27 professional identity formation: a study protocol to explore impression management processes in institutional academic contexts.

    Get PDF
    BACKGROUND: Despite significant differences in terms of medical training and health care context, the phenomenon of medical students\u27 declining interest in family medicine has been well documented in North America and in many other developed countries as well. As part of a research program on family physicians\u27 professional identity formation initiated in 2007, the purpose of the present investigation is to examine in-depth how family physicians construct their professional image in academic contexts; in other words, this study will allow us to identify and understand the processes whereby family physicians with an academic appointment seek to control the ideas others form about them as a professional group, i.e. impression management. METHODS/DESIGN: The methodology consists of a multiple case study embedded in the perspective of institutional theory. Four international cases from Canada, France, Ireland and Spain will be conducted; the \u22case\u22 is the medical school. Four levels of analysis will be considered: individual family physicians, interpersonal relationships, family physician professional group, and organization (medical school). Individual interviews and focus groups with academic family physicians will constitute the main technique for data generation, which will be complemented with a variety of documentary sources. Discourse techniques, more particularly rhetorical analysis, will be used to analyze the data gathered. Within- and cross-case analysis will then be performed. DISCUSSION: This empirical study is strongly grounded in theory and will contribute to the scant body of literature on family physicians\u27 professional identity formation processes in medical schools. Findings will potentially have important implications for the practice of family medicine, medical education and health and educational policies
    corecore