29 research outputs found
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
The clinical and cost-effectiveness of total versus partial knee replacement in patients with medial compartment osteoarthritis (TOPKAT): 5-year outcomes of a randomised controlled trial
Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study
Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27\u201333), representing 0\ub714 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7\ub76 mL/kg PBW [IQR 6\ub77\u20139\ub71] vs 7\ub79 mL/kg PBW [6\ub78\u20139\ub71]; p=0\ub7346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6\ub70 cm H2O [IQR 5\ub70\u20138\ub70] vs 5\ub70 cm H2O [5\ub70\u20137\ub70]; p<0\ub70001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0\ub7004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0\ub70001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0\ub70001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0\ub70001). VT did not differ between patients who did and did not develop ARDS (p=0\ub7471 for those at risk of ARDS; p=0\ub7323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS
Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study
Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27–33), representing 0·14 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7·6 mL/kg PBW [IQR 6·7–9·1] vs 7·9 mL/kg PBW [6·8–9·1]; p=0·346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6·0 cm H2O [IQR 5·0–8·0] vs 5·0 cm H2O [5·0–7·0]; p<0·0001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0·004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0·0001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0·0001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0·0001). VT did not differ between patients who did and did not develop ARDS (p=0·471 for those at risk of ARDS; p=0·323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS
Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab
AbstractAnti tumour necrosis factor (anti-TNF) drugs increase the risk of serious respiratory infection and impair protective immunity following pneumococcal and influenza vaccination. Here we report SARS-CoV-2 vaccine-induced immune responses and breakthrough infections in patients with inflammatory bowel disease, who are treated either with the anti-TNF antibody, infliximab, or with vedolizumab targeting a gut-specific anti-integrin that does not impair systemic immunity. Geometric mean [SD] anti-S RBD antibody concentrations are lower and half-lives shorter in patients treated with infliximab than vedolizumab, following two doses of BNT162b2 (566.7 U/mL [6.2] vs 4555.3 U/mL [5.4], p <0.0001; 26.8 days [95% CI 26.2 – 27.5] vs 47.6 days [45.5 – 49.8], p <0.0001); similar results are also observed with ChAdOx1 nCoV-19 vaccination (184.7 U/mL [5.0] vs 784.0 U/mL [3.5], p <0.0001; 35.9 days [34.9 – 36.8] vs 58.0 days [55.0 – 61.3], p value < 0.0001). One fifth of patients fail to mount a T cell response in both treatment groups. Breakthrough SARS-CoV-2 infections are more frequent (5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher, more sustained antibody levels are observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Our results thus suggest that adapted vaccination schedules may be required to induce immunity in at-risk, anti-TNF-treated patients.</jats:p
Follow-on rifaximin for the prevention of recurrence following standard treatment of infection with clostridium fifficile (RAPID): a randomised placebo controlled trial
©2018 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/gutjnl-2018-316794Background Clostridium difficile infection (CDI) recurs after initial treatment in approximately one in four patients. A single-centre pilot study suggested that this could be reduced using ’follow-on’ rifaximin treatment. We aimed to assess the efficacy of rifaximin treatment in preventing recurrence.
Methods A multisite, parallel group, randomised, placebo controlled trial recruiting patients aged ≥18 years immediately after resolution of CDI through treatment with metronidazole or vancomycin. Participants received either rifaximin 400mg three times a day for 2weeks, reduced to 200mg three times a day for a further 2weeks or identical placebo. The primary endpoint was recurrence of CDI within 12 weeks of trial entry.
Results Between December 2012 and March 2016, 151 participants were randomised to either rifaximin or placebo. Primary outcome data were available on 130. Mean age was 71.9 years (SD 15.3). Recurrence within 12 weeks was 29.5% (18/61) among participants allocated to placebo compared with 15.9% (11/69) among those allocated to rifaximin, a difference between groups of 13.7% (95% CI −28.1% to 0.7%, p=0.06). The risk ratio was 0.54 (95% CI 0.28 to 1.05, p=0.07). During 6-month safety follow-up, nine participants died in each group (12%). Adverse event rates were similar between groups.
Conclusion While ’follow-on’ rifaximin after CDI appeared to halve recurrence rate, we failed to reach our recruitment target in this group of frail elderly patients, so the estimated effect of rifaximin lacks precision. A meta-analysis including a previous trial suggests that rifaximin may be effective; however, further, larger confirmatory studies are needed.The trial was sponsored by the University of Nottingham, was coordinated from the Nottingham Clinical Trials Unit and was supported by the National Institute for Health Research Clinical Research Network
Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial
Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial
BackgroundTranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding.MethodsWe did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124.FindingsBetween July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98).InterpretationWe found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial.</div
Impact of Evidence‐Based Stroke Care on Patient Outcomes: A Multilevel Analysis of an International Study
Background
The uptake of proven stroke treatments varies widely. We aimed to determine the association of evidence‐based processes of care for acute ischemic stroke (
AIS
) and clinical outcome of patients who participated in the HEADPOST (Head Positioning in Acute Stroke Trial), a multicenter cluster crossover trial of lying flat versus sitting up, head positioning in acute stroke.
Methods and Results
Use of 8
AIS
processes of care were considered: reperfusion therapy in eligible patients; acute stroke unit care; antihypertensive, antiplatelet, statin, and anticoagulation for atrial fibrillation; dysphagia assessment; and physiotherapist review. Hierarchical, mixed, logistic regression models were performed to determine associations with good outcome (modified Rankin Scale scores 0–2) at 90 days, adjusted for patient and hospital variables. Among 9485 patients with AIS, implementation of all processes of care in eligible patients, or “defect‐free” care, was associated with improved outcome (odds ratio, 1.40; 95% CI, 1.18–1.65) and better survival (odds ratio, 2.23; 95%
CI
, 1.62–3.09). Defect‐free stroke care was also significantly associated with excellent outcome (modified Rankin Scale score 0–1) (odds ratio, 1.22; 95%
CI
, 1.04–1.43). No hospital characteristic was independently predictive of outcome. Only 1445 (15%) of eligible patients with AIS received all processes of care, with significant regional variations in overall and individual rates.
Conclusions
Use of evidence‐based care is associated with improved clinical outcome in
AIS
. Strategies are required to address regional variation in the use of proven
AIS
treatments.
Clinical Trial Registration
URL
:
https://www.clinicaltrials.gov
. Unique Identifier:
NCT
02162017.
</jats:sec
