3,193 research outputs found

    Neighborhood income inequality

    Get PDF
    This paper offers a descriptive empirical analysis of the geographic pattern of income inequality within a sample of 359 US metropolitan areas between 1980 and 2000. Specifically, we decompose the variance of metropolitan area-level household income into two parts: one associated with the degree of variation among household incomes within neighborhoods - defined by block groups and tracts - and the other associated with the extent of variation among households in different neighborhoods. Consistent with previous work, the results reveal that the vast majority of a city’s overall income inequality - at least three quarters - is driven by within-neighborhood variation rather than between-neighborhood variation, although we find that the latter rose significantly during the 1980s, especially between block groups. We then identify a number of metropolitan area-level characteristics that are associated with both levels of and changes in the degree of each type of residential income inequality.Income distribution ; Income

    Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon

    Get PDF
    The infrared reflectance spectra at normal incidence for split-ring resonator arrays fabricated in thin films of three different metals on a silicon substrate are reported. The results are compared with a finite difference time domain simulation of the structures and a simple and novel equivalent-circuit method for the calculation of the first and second resonant wavelengths

    EPR before EPR: a 1930 Einstein-Bohr thought experiment revisited

    Full text link
    In 1930 Einstein argued against consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of mass of the box which emitted a photon. Bohr seemingly triumphed over Einstein by arguing that the Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit this thought experiment from a modern point of view at a level suitable for undergraduate readership and find that neither Einstein nor Bohr was right. Instead, this thought experiment should be thought of as an early example of a system demonstrating nonlocal "EPR" quantum correlations, five years before the famous Einstein-Podolsky-Rosen paper.Comment: 11 pages, revised, accepted for publication in Eur. J. Phy

    Understanding light quanta: First quantization of the free electromagnetic field

    Full text link
    The quantization of the electromagnetic field in vacuum is presented without reference to lagrangean quantum field theory. The equal time commutators of the fields are calculated from basic principles. A physical discussion of the commutators suggest that the electromagnetic fields are macroscopic emergent properties of more fundamental physical system: the photons

    Quantum fluctuations as deviation from classical dynamics of ensemble of trajectories parameterized by unbiased hidden random variable

    Full text link
    A quantization method based on replacement of c-number by c-number parameterized by an unbiased hidden random variable is developed. In contrast to canonical quantization, the replacement has straightforward physical interpretation as statistical modification of classical dynamics of ensemble of trajectories, and implies a unique operator ordering. We then apply the method to develop quantum measurement without wave function collapse \'a la pilot-wave theory.Comment: 14 pages, accepted in Physica

    Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record.RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.Fever is a universal response to infection, and opportunistic pathogens such as Candida albicans have evolved complex circuitry to sense and respond to heat. Here we harness RNA-seq and ChIP-seq to discover that the heat shock transcription factor, Hsf1, binds distinct motifs in nucleosome-depleted promoter regions to regulate heat shock genes and genes involved in virulence in C. albicans. Consequently, heat shock increases C. albicans host cell adhesion, damage and virulence. Hsf1 activation depends upon the molecular chaperone Hsp90 under basal and heat shock conditions, but the effects are opposite and in part controlled at the level of Hsf1 expression and DNA binding. Finally, we demonstrate that Hsp90 regulates global transcription programs by modulating nucleosome levels at promoters of stress-responsive genes. Thus, we describe a mechanism by which C. albicans responds to temperature via Hsf1 and Hsp90 to orchestrate gene expression and chromatin architecture, thereby enabling thermal adaptation and virulence.Wellcome TrustCanadian Institutes of Health ResearchCanadian Institutes of Health ResearchBiotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC)Science and Technology Development Fund of Macau S.A.R (FDCT)Research and Development Administrative Office of the University of MacauNational Institutes of Health (NIH

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Interplay between telecommunications and face-to-face interactions - a study using mobile phone data

    Get PDF
    In this study we analyze one year of anonymized telecommunications data for over one million customers from a large European cellphone operator, and we investigate the relationship between people's calls and their physical location. We discover that more than 90% of users who have called each other have also shared the same space (cell tower), even if they live far apart. Moreover, we find that close to 70% of users who call each other frequently (at least once per month on average) have shared the same space at the same time - an instance that we call co-location. Co-locations appear indicative of coordination calls, which occur just before face-to-face meetings. Their number is highly predictable based on the amount of calls between two users and the distance between their home locations - suggesting a new way to quantify the interplay between telecommunications and face-to-face interactions

    Expanding and Collapsing Scalar Field Thin Shell

    Full text link
    This paper deals with the dynamics of scalar field thin shell in the Reissner-Nordstro¨\ddot{o}m geometry. The Israel junction conditions between Reissner-Nordstro¨\ddot{o}m spacetimes are derived, which lead to the equation of motion of scalar field shell and Klien-Gordon equation. These equations are solved numerically by taking scalar field model with the quadratic scalar potential. It is found that solution represents the expanding and collapsing scalar field shell. For the better understanding of this problem, we investigate the case of massless scalar field (by taking the scalar field potential zero). Also, we evaluate the scalar field potential when pp is an explicit function of RR. We conclude that both massless as well as massive scalar field shell can expand to infinity at constant rate or collapse to zero size forming a curvature singularity or bounce under suitable conditions.Comment: 15 pages, 11 figure

    All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well

    Full text link
    We use ultrafast optical pulses and coherent techniques to create spin entangled states of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure
    • …
    corecore