73 research outputs found

    Nebivolol, a beta adrenergic receptor antagonist blocks angiotensin II-mediated signaling in heart [abstract]

    Get PDF
    We recently showed that Nebivolol, a [beta]-adrenergic receptor (AR) antagonist attenuates myocardial oxidative stress and promotes insulin metabolic signaling in 9 week old Zucker obese (ZO) insulin resistant rats. Here, we demonstrate that Nebivolol suppresses angiotensin II type I receptor (AT1R)-mediated signaling in ZO hearts as well as in HL-1 cardiomyocytes

    Attenuation of NADPH Oxidase Activation and Glomerular Filtration Barrier Remodeling With Statin Treatment

    Get PDF
    Activation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase by angiotensin II is integral to the formation of oxidative stress in the vasculature and the kidney. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibition is associated with reductions of oxidative stress in the vasculature and kidney and associated decreases in albuminuria. Effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibition on oxidative stress in the kidney and filtration barrier integrity are poorly understood. To investigate, we used transgenic TG(mRen2)27(Ren2) rats, which harbor the mouse renin transgene and renin-angiotensin system activation, and an immortalized murine podocyte cell line. We treated young, male Ren2 and Sprague-Dawley rats with rosuvastatin (20 mg/kg IP) or placebo for 21 days. Compared with controls, we observed increases in systolic blood pressure, albuminuria, renal NADPH oxidase activity, and 3-nitrotryosine staining, with reductions in the rosuvastatin-treated Ren2. Structural changes on light and transmission electron microscopy, consistent with periarteriolar fibrosis and podocyte foot-process effacement, were attenuated with statin treatment. Nephrin expression was diminished in the Ren2 kidney and trended to normalize with statin treatment. Angiotensin II- dependent increases in podocyte NADPH oxidase activity and subunit expression (NOX2, NOX4, Rac, and p22phox) and reactive oxygen species generation were decreased after in vitro statin treatment. These data support a role for increased NADPH oxidase activity and subunit expression with resultant reactive oxygen species formation in the kidney and podocyte. Furthermore, statin attenuation of NADPH oxidase activation and reactive oxygen species formation in the kidney/podocyte seems to play roles in the abrogation of oxidative stress-induced filtration barrier injury and consequent albuminuria

    Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation

    Get PDF
    This article may also be found at the publisher's website at http://hyper.ahajournals.org/cgi/content/abstract/53/2/158?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=habibi&searchid=1&FIRSTINDEX=0&resourcetype=HWCITEmerging evidence indicates that mineralocorticoid receptor (MR) blockade reduces the risk of cardiovascular events beyond those predicted by its blood pressure-lowering actions; however, the underlying mechanisms remain unclear. To investigate whether protection elicited by MR blockade is through attenuation of vascular apoptosis and injury, independently of blood pressure lowering, we administered a low dose of the MR antagonist spironolactone or vehicle for 21 days to hypertensive transgenic Ren2 rats with elevated plasma aldosterone levels. Although Ren2 rats developed higher systolic blood pressures compared with Sprague-Dawley littermates, low-dose spironolactone treatment did not reduce systolic blood pressure compared with untreated Ren2 rats. Ren2 rats exhibited vascular injury as evidenced by increased apoptosis, hemidesmosome-like structure loss, mitochondrial abnormalities, and lipid accumulation compared with Sprague-Dawley rats, and these abnormalities were attenuated by MR antagonism. Protein kinase B activation is critical to vascular homeostasis via regulation of cell survival and expression of apoptotic genes. Protein kinase B serine473 phosphorylation was impaired in Ren2 aortas and restored with MR antagonism. In vivo MR antagonist treatment promoted antiapoptotic effects by increasing phosphorylation of BAD serine136 and expression of Bcl-2 and Bcl-xL, decreasing cytochrome c release and BAD expression, and suppressing caspase-3 activation. Furthermore, MR antagonism substantially reduced the elevated NADPH oxidase activity and lipid peroxidation, expression of angiotensin II, angiotensin type 1 receptor, and MR in Ren2 vasculature. These results demonstrate that MR antagonism protects the vasculature from aldosterone-induced vascular apoptosis and structural injury via rescuing protein kinase B activation, independent of blood pressure effects

    Mineralocorticoid Receptor Blockade Attenuates Chronic Overexpression of the Renin-Angiotensin- Aldosterone System Stimulation of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Cardiac Remodeling

    Get PDF
    doi: 10.1210/en.2006-1691The renin-angiotensin-aldosterone system contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. Angiotensin II and aldosterone (corticosterone in rodents) together generate reactive oxygen species (ROS) via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which likely facilitate this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo mineralocorticoid receptor (MR) blockade in a rodent model of the chronically elevated tissue renin-angiotensin-aldosterone system, the transgenic TG (mRen2) 27 rat (Ren2). The Ren2 overexpresses the mouse renin transgene with resultant hypertension, insulin resistance, proteinuria, and cardiovascular damage. Young (6- to 7-wk-old) male Ren2 and age-matched Sprague-Dawley rats were treated with spironolactone or placebo for 3 wk. Heart tissue ROS, immunohistochemical analysis of 3-nitrotyrosine,and NADPH oxidase (NOX) subunits (gp91phox recently renamed NOX2, p22phox, Rac1, NOX1, and NOX4) were measured. Structural changes were assessed with cine-magnetic resonance imaging, transmission electron microscopy, and light microscopy. Significant increases in Ren2 septal wall thickness (cine-magnetic resonance imaging) were accompanied by perivascular fibrosis, increased mitochondria, and other ultrastructural changes visible by light microscopy and transmission electron microscopy. Although there was no significant reduction in systolic blood pressure, significant improvements were seen with MR blockade on ROS formation and NOX subunits (each P < 0.05). Collectively, these data suggest that MR blockade, independent of systolic blood pressure reduction, improves cardiac oxidative stress-induced structural and functional changes, which are driven, in part, by angiotensin type 1 receptor-mediated increases in NOX.This research was supported by National Institutes of Health (NIH) Grants R01 HL73101-01A1 (to J.R.S.) and P01 HL-51952 (to C.F.), the Veterans Affairs Merit System (0018) (to J.R.S.), and Advanced Research Career Development (to C.S.). Male transgenic Ren2 rats and male Sprague-Dawley controls were kindly provided by C.F. through the Transgenic Core Facility supported in part by NIH Grant HL-51952

    Gestational Diabetes Mellitus Alone in the Absence of Subsequent Diabetes Is Associated With Microalbuminuria: Results from the Kidney Early Evaluation Program (KEEP)

    Get PDF
    OBJECTIVE Women with gestational diabetes mellitus (GDM) maintain a higher risk for recurrent GDM and overt diabetes. Overt diabetes is a risk factor for development of chronic kidney disease (CKD), but GDM alone, without subsequent development of overt diabetes, may also pose a risk for CKD

    Lysophosphatidic Acid Induces MDA-MB-231 Breast Cancer Cells Migration through Activation of PI3K/PAK1/ERK Signaling

    Get PDF
    Enhanced motility of cancer cells is a critical step in promoting tumor metastasis. Lysophosphatidic acid (LPA), representing the major mitogenic activity in serum, stimulates migration in various types of cancer cells. However, the underlying signaling mechanisms for LPA-induced motility of cancer cells remain to be elucidated.In this study, we found that LPA dose-dependently stimulated migration of MDA-MB-231 breast cancer cells, with 10 µM being the most effective. LPA also increased ERK activity and the MEK inhibitor U0126 could block LPA-induced ERK activity and cell migration. In addition, LPA induced PAK1 activation while ERK activation and cell migration were inhibited by ectopic expression of an inactive mutant form of PAK1 in MDA-MB-231 cells. Furthermore, LPA increased PI3K activity, and the PI3K inhibitor LY294002 inhibited both LPA-induced PAK1/ERK activation and cell migration. Moreover, in the breast cancer cell, LPA treatment resulted in remarkable production of reactive oxygen species (ROS), while LPA-induced ROS generation, PI3K/PAK1/ERK activation and cell migration could be inhibited by N-acetyl-L-Cysteine, a scavenger of ROS.Taken together, this study identifies a PI3K/PAK1/ERK signaling pathway for LPA-stimulated breast cancer cell migration. These data also suggest that ROS generation plays an essential role in the activation of LPA-stimulated PI3K/PAK1/ERK signaling and breast cancer cell migration. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Comparison of the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study

    No full text
    compared characteristics of reclassified individuals and mortality risk predictions using the new equation. Methods: Of 123,704 eligible KEEP participants, 116,321 with data available for this analysis were included. Glomerular filtration rate (GFR) was estimated using the MDRD Study (eGFR MDRD) and CKD-EPI (eGFR CKD-EPI) equations with creatinine level calibrated to standardized methods. Participants were characterized by eGF

    An Emerging Role for Understanding Orthostatic Hyp'er'tension in the Cardiorenal Syndrome

    No full text
    Orthostatic hypertension (OHT) is a clinically important problem increasingly recognized in persons with borderline hypertension, diabetes mellitus, and autonomic neuropathies, and in the elderly. Moreover, the association of OHT with progression of target end-organ damage, especially coronary heart disease and chronic kidney disease (CKD), and the attendant increased cardiovascular disease (CVD) and CKD risk, is gaining attention but is still underappreciated. There are various mechanisms that contribute to the development of OHT: excessive vascular adrenergic sensitivity, baroreceptor reflex abnormalities, and inappropriate activation of the renin-angiotensin-aldosterone system, which are also mechanisms that lead to cardiorenal metabolic disease (CRS). While the evidence is compelling for the clinical importance of OHT, more investigation is needed to evaluate the effects of OHT on CKD and CVD. The notion that the development of OHT is a risk factor for the development of CRS raises the need for further clinical and investigational attention to this clinical dilemma
    • …
    corecore