13,152 research outputs found

    ASSESSMENT OF GEOMETRIC ACCURACY OF VHR SATELLITE IMAGES

    Get PDF
    VHR images of earths ’ surface are more frequently used and taken advantage of in substitution to aerial photographs. Geometric dependences of creation orthophoto based on aerial photos are known and distinguished from images of VHR. Results of work led are presented in this article within the confines of an investigative project under the Committee of Scientific Research of Poland concerning the geometric mechanism of VHR images and corrections. Two test fields have been made up for this project (city, country and mountain terrain). For those test fields, images from IKONOS, QuickBird were ordered. In the conducted research the angle of the axes was take into consideration: 0 ° – 15 ° In each test field area, after the identification of control points on the VHR images, about 30 – 90 GCP have been measured with GPS in accuracy of 10 cm. For image geometric corrections in this project two types of available DTM models in Poland have been applied with varying accuracy. Geometric correction have been realized with the aid of generally available software as PCI Geomatica 9 with taking into consideration RPC method and camera ( rigorous) model. Throughout the work investigated, in each of the individual scenes of VHR various distribution and number of GCP was utilized for the process of orthorectification. Accuracy of orthorectification process received in result of led work, for VHR images at different configuration of geometry and methodology. Detailed results of experiments allow determining the optimal foundation for different methods of geometric corrections from IKONOS, QuickBird images and establishing effective process of dependence and defining geometric accuracy for different applications. 1

    Multi-Estimator Full Left Ventricle Quantification through Ensemble Learning

    Full text link
    Cardiovascular disease accounts for 1 in every 4 deaths in United States. Accurate estimation of structural and functional cardiac parameters is crucial for both diagnosis and disease management. In this work, we develop an ensemble learning framework for more accurate and robust left ventricle (LV) quantification. The framework combines two 1st-level modules: direct estimation module and a segmentation module. The direct estimation module utilizes Convolutional Neural Network (CNN) to achieve end-to-end quantification. The CNN is trained by taking 2D cardiac images as input and cardiac parameters as output. The segmentation module utilizes a U-Net architecture for obtaining pixel-wise prediction of the epicardium and endocardium of LV from the background. The binary U-Net output is then analyzed by a separate CNN for estimating the cardiac parameters. We then employ linear regression between the 1st-level predictor and ground truth to learn a 2nd-level predictor that ensembles the results from 1st-level modules for the final estimation. Preliminary results by testing the proposed framework on the LVQuan18 dataset show superior performance of the ensemble learning model over the two base modules.Comment: Jiasha Liu, Xiang Li and Hui Ren contribute equally to this wor

    The Availability and Consistency of Dengue Surveillance Data Provided Online by the World Health Organization

    Get PDF
    Background: The use of high quality disease surveillance data has become increasingly important for public health action against new threats. In response, countries have developed a wide range of disease surveillance systems enabled by technological advancements. The heterogeneity and complexity of country data systems have caused a growing need for international organizations such as the World Health Organization (WHO) to coordinate the standardization, integration, and dissemination of country disease data at the global level for research and policy. The availability and consistency of currently available disease surveillance data at the global level are unclear. We investigated this for dengue surveillance data provided online by the WHO. Methods and Findings: We extracted all dengue surveillance data provided online by WHO Headquarters and Regional Offices (RO’s). We assessed the availability and consistency of these data by comparing indicators within and between sources. We also assessed the consistency of dengue data provided online by two example countries (Brazil and Indonesia). Data were available from WHO for 100 countries since 1955 representing a total of 23 million dengue cases and 82 thousand deaths ever reported to WHO. The availability of data on DengueNet and some RO’s declined dramatically after 2005. Consistency was lacking between sources (84% across all indicators representing a discrepancy of almost half a million cases). Within sources, data at high spatial resolution were often incomplete. Conclusions: The decline of publicly available, integrated dengue surveillance data at the global level will limit opportunities for research, policy, and advocacy. A new financial and operational framework will be necessary for innovation and for the continued availability of integrated country disease data at the global level

    Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies

    Get PDF
    We study the chemo-dynamical evolution of elliptical galaxies and their hot X-ray emitting gas using high-resolution cosmological simulations. Our Tree N-body/SPH code includes a self-consistent treatment of radiative cooling, star formation, supernovae feedback, and chemical enrichment. We present a series of LCDM cosmological simulations which trace the spatial and temporal evolution of heavy element abundance patterns in both the stellar and gas components of galaxies. X-ray spectra of the hot gas are constructed via the use of the vmekal plasma model, and analysed using XSPEC with the XMM EPN response function. Simulation end-products are quantitatively compared with the observational data in both the X-ray and optical regime. We find that radiative cooling is important to interpret the observed X-ray luminosity, temperature, and metallicity of the interstellar medium of elliptical galaxies. However, this cooled gas also leads to excessive star formation at low redshift, and therefore results in underlying galactic stellar populations which are too blue with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy Connection - The Distribution of Baryons at z=0", ed. M. Putman & J. Rosenberg; High resolution version is available at http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm

    Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality.

    Get PDF
    BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina

    How Did the Spider Cross the River? Behavioral Adaptations for River-Bridging Webs in Caerostris darwini (Araneae: Araneidae)

    Get PDF
    Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' "extended phenotypes". In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider's unique web ecology and architecture coevolved with new web building behaviors.We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders.Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders

    Radiocarbon in food: a non-problem of health effects

    Get PDF
    Recently it has come to our attention that a paper was published in this journal entitled “recycling greenhouse gas fossil fuel emissions into low radiocarbon food products to reduce human genetic damage” (Williams in Environ Chem Lett 5:197–202, 2007). In this article, it is argued that food grown in a greenhouse is healthier for people, when the greenhouse is fertilised with CO2 prepared from fossil fuels. In this comment, however, we argue that the effect on human health is completely negligible
    corecore