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Background: The respiratory tract is a major target of exposure to air pollutants, and respiratory 

diseases are associated with both short- and long-term exposures. We hypothesized that improved 

air quality in North Carolina was associated with reduced rates of death from respiratory diseases 

in local populations.

Materials and methods: We analyzed the trends of emphysema, asthma, and pneumonia 

mortality and changes of the levels of ozone, sulfur dioxide (SO
2
), nitrogen dioxide (NO

2
), carbon 

monoxide (CO), and particulate matters (PM
2.5

 and PM
10

) using monthly data measurements 

from air-monitoring stations in North Carolina in 1993–2010. The log-linear model was used to 

evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of 

population) calculated for 5-year age-groups and for standard 2000 North Carolina population. 

The studied associations were adjusted by age group-specific smoking prevalence and seasonal 

fluctuations of disease-specific respiratory deaths.

Results: Decline in emphysema deaths was associated with decreasing levels of SO
2
 and CO in 

the air, decline in asthma deaths–with lower SO
2
, CO, and PM

10
 levels, and decline in pneumonia 

deaths–with lower levels of SO
2
. Sensitivity analyses were performed to study potential effects 

of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects 

of air pollutants on mortality during summer and winter, the impact of approach when only the 

underlying causes of deaths were used, and when mortality and air-quality data were analyzed 

on the county level. In each case, the results of sensitivity analyses demonstrated stability. The 

importance of analysis of pneumonia as an underlying cause of death was also highlighted.

Conclusion: Significant associations were observed between decreasing death rates of emphysema, 

asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.

Keywords: chronic obstructive pulmonary disease, sulfur dioxide, carbon monoxide, nitrogen 

dioxide, particulate matter

Introduction
Air pollution has a deleterious impact on human health,1–6 with global outdoor air 

pollutants estimated to account for approximately 1.4% of total mortality and 2% of 

all cardiopulmonary mortality.7 Both ambient particles4,8,9 and such gases as nitrogen 

dioxide (NO
2
), ozone (O

3
), and carbon monoxide (CO) have been shown to increase 

total, cardiovascular, and respiratory (predominantly due to lung cancer and chronic 

obstructive pulmonary disease [COPD]) mortality and morbidity.3,10,11 While the impact 

on any individual’s risk of death has been thought to be relatively modest per se, the 

overall impact of air pollution on the health of an exposed population makes it a major 

public health concern.12
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While more studies on short-term impacts of changes 

of air quality are available (such as the legislated traffic 

holidays during the 1996 Atlanta Olympic Games13 and the 

2008 Beijing Olympic Games14), less is known about the 

long-term effects of changing air quality on the health of 

exposed populations. For example, a ban on heating-coal 

sales in Dublin was thought to be associated with both 

reduced pollution from airborne particulate matters (PMs) 

and 5.7% reduction in all-cause, 15.5% reduction in respi-

ratory, and 10.3% reduction in cardiovascular mortality.15 

However, these results were considered inconclusive, due to 

the complexity and expense of evaluating the health effects 

of air pollution on populations.16,17 Since the 1990s, a variety 

of acts, standards, and requirements in the US have been 

adopted to improve air quality. For example, increasingly 

stringent national gasoline and automotive engine require-

ments have been applied, resulting in a decrease of CO, NO
x
, 

PM, and volatile organic compounds in the air. At the state 

level, North Carolina in 1992 entered into the Southern Appa-

lachian Mountains Initiative, leading to the development of 

the Clean Smokestacks Act18 to mandate reduced emissions 

from coal-fired power plants.19

While few studies have analyzed the associations of 

both air quality and health over a long period, and they were 

typically limited to analysis of a specific air pollutant or a 

couple of pollutants, we were able to study longitudinally a 

number of air contaminants, including both PMs and noxious 

gases. In addition, we analyzed both air quality and health 

outcomes over almost two decades (1993–2010). Because 

respiratory morbidity and mortality are affected by changes 

in air quality,20–22 we evaluated the associations between the 

changes of the levels of PM
10

 and PM
2.5

, ozone, CO, NO
2
, 

and SO
2
 in the air and death rates of emphysema, asthma, 

and pneumonia.

Materials and methods
Data
We analyzed mortality rates for emphysema (International 

Classification of Diseases [ICD]-9 code 492, ICD-10 code 

J43), asthma (ICD-9 code 493, ICD-10 codes J45, J46), and 

pneumonia (ICD-9 codes 480.0, 480.1, 480.2, 480.9, 485, 486, 

487.0, 487.1, ICD-10 codes J11.00, J11.1, J12.0, J12.1, J12.2, 

J12.9, J18.0, J18.9) in North Carolina from 1983 to 2010 using 

the data from the Vital Statistics National Center for Health Sta-

tistics Multiple Cause of Death dataset. We started the mortality 

analysis with the data from 1983, but could only analyze air 

quality when monitoring data were available, ie, 1993–2010. 

The mortality data enabled an analysis of a longer period of 

death-rate dynamics, thus allowing to observe the dynamics of 

disease-specific mortality before the measured reduction in par-

ticulate and gaseous emissions in North Carolina. Age-adjusted 

death rates (per 100,000 of population) were calculated using 

5-year age-groups and standard 2000 North Carolina popula-

tion. The data on population were provided by the Surveillance 

Epidemiology and End Results Registry (SEER) at http://www.

seer.cancer.gov/popdata/download.html.

Data on concentrations of PM
2.5

 (µg/m3), PM
10

 (µg/m3), 

ozone (ppb), CO (ppb), NO
2
 (ppb), and SO

2
 (ppb) in the air 

in 1993–2010 were obtained from the US Environmental 

Protection Agency (EPA) (http://www.epa.gov/ttn/airs/air-

saqs/detaildata/downloadaqsdata.htm). We used the averaged 

month-specific concentrations of air pollutants for North 

Carolina to further analyze them for associations with the 

dynamics of cause-specific monthly mortality in the state.  

A two-stage averaging procedure was used to avoid heteroge-

neity in the numbers of measurements made in certain days 

of the month: first, we calculated the day-specific means, and 

then these values were averaged, resulting in month-specific 

means. Negative values were excluded, and measurements 

with various units were converted to µg/m3 for PM
2.5

 and 

PM
10

, and to ppb for ozone, CO, NO
2
, and SO

2
. Since the data 

on air pollutants represented different methods of registration 

during different durations of sample collection (ie, the length 

of time used to acquire a sample measurement), an auxiliary 

analysis was performed to check whether the specific method 

could be considered as an outlier and therefore excluded 

from the analyses.

Also, data on the prevalence of tobacco use for 1995–2010 

were obtained from the Centers for Disease Control and 

Prevention Behavioral Risk Factor Surveillance System 

survey for age–groups 18–24, 25–34, 35–44, 45–54, 55–64, 

and 65+ years (http://www.cdc.gov/brfss).

Ethics statement
The data used in this study have no individual identifiable 

information. No specific procedures were required for de-

identification of the records. All data analyses were designed 

and performed in accordance with the ethical standards 

of the committee on human experimentation and with the 

Helsinki Declaration (1975, revised in 1983), and were 

approved by the Duke University Health System Institutional 

Review Board.

Methods
Trends of cause-specific death rates and of levels of air 

contaminants were analyzed for correlations. Adjustment by 

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.seer.cancer.gov/popdata/download.html
http://www.seer.cancer.gov/popdata/download.html
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
http://www.cdc.gov/brfss


International Journal of COPD 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

615

Respiratory mortality and changes in air quality

smoking prevalence and seasonal fluctuations in respiratory 

deaths (for monthly death rates of emphysema, asthma, and 

pneumonia) were included in a log-linear model that was 

used to evaluate the associations between the level of each 

studied air pollutant and the death rates, as follows:

	 log( ) ,mr u c s= + + + +
=

∑β β µ ε1 2
1

11

m
m

I

	

(1)

where u was the intercept, b
1
 represented the effect of each 

studied air pollutant depending on its concentration (denoted 

by c) measured in its units (as described in the Data section), 

b
2
 represented the effect of smoking prevalence (denoted 

by s), µ
m
 represented the effects of 11 months (January to 

November for each year) in respect of December (I
m
 is the 

month indicator), and ε stood for random residuals. Note 

that if the air-pollutant concentration changes by one unit of 

its measured level in the air, the rate r changes by the factor 

of exp(b
1
). For multiple comparisons, the Bonferroni cor-

rection was applied.

Sensitivity analysis
The potential effect of ICD code changes (from ICD-9 to 

ICD-10), the seasonal fluctuation of air pollutants and mor-

tality during summer and winter, and the analysis validity 

when only the underlying causes of deaths contributed to the 

cause-specific death rates were tested. In addition, sensitivity 

analysis was performed for county-level data on respiratory 

mortality and air-pollutant levels. Only counties for which 

the data on air quality were directly measured by monitoring 

stations were included in the analysis: 37 counties for ozone 

measurements, 11 counties for NO
2
, 22 counties for SO

2
, 16 

counties for CO, and 37 counties for PM
2.5

 and PM
10

 measure-

ments. As in the main analysis, dynamics of smoking preva-

lence (on state level) and seasonal fluctuations in respiratory 

mortality were used for adjustments of the results.

Results
We analyzed up to 180 month-specific measurements of each 

of the studied air pollutants recorded at multiple monitoring 

sites in North Carolina (see Table 1 for detailed air pollutant-

specific information). We found air quality in North Carolina 

gradually improving over time, primarily due to decreasing 

PM
10

, NO
2
, and CO levels. These decreases became more 

pronounced from 2002 (see Figure 1; note that individual 

pollutants were placed onto a single graph by utilizing the 

arbitrary units to enable a collective visualization of the 

trends). The following seasonal fluctuations of pollutants 

levels were observed (Figure 2): levels of ozone, PM
2.5

, and 

PM
10

 were higher in summer, while levels of SO
2
, NO

2
, and 

CO were higher in winter.

Since 1983, the death rates of three studied diseases have 

been decreasing (Figure 3), with declines in emphysema 

death rates more dramatic since 1998, for asthma since 1995, 

and for pneumonia since 1990. From 1993 to 2010, 101,374 

deaths in North Carolina were caused by pneumonia, 13,187 

by emphysema, and 5,509 by asthma. The detailed description 

of the studied population is presented in Table 2. Among those 

who died from emphysema and from pneumonia, 80.7% and 

85.9%, respectively, were older than 65 years. For asthma, 

ages at death were younger: 9.7% were younger than 40 years, 

and 31.3% were aged 40–64 years old. However, the declin-

ing trends of pollutant concentrations and death rates during 

1993–2010 do not essentially confirm causality.

The association between the changes of air-pollutant 

levels and dynamics of disease-specific death rates after 

being adjusted for smoking prevalence (for respective year 

and age-group), and by monthly fluctuations in respiratory 

disease-specific death rates are shown in Table 3, for each 

air pollutant. The disease-specific death rate (number of 

deaths per 100,000 population) decreased by a factor cal-

culated based on the value of estimate presented in Table 3 

(ie, per decrease of concentration of each pollutant by one 

unit of measurement: per 1.0 ppb for ozone, SO
2
, NO

2
, CO, 

and per 1.0 µg/m3 for PM
2.5

 and PM
10

). For example, the 

estimate for emphysema in Table 3 means that if the SO
2
 

level decreases by 1 ppb, the emphysema death rate (per 

100,000 population) can be predicted to decrease by a factor 

of exp(0.0547) =1.056. Similar interpretation can be devel-

oped for smoking estimates, keeping in mind that smoking 

is represented by its prevalence in population measured in 

percentages, and thus the respective exponential factor cor-

responds to a change in smoking prevalence by 1%.

Among gaseous pollutants, the estimates for associa-

tions between reduction of air-pollutant levels and reduc-

tion of death rates were significant for SO
2
 and emphysema 

(0.0547±0.0106, P,0.0001), asthma (0.0598±0.0173, 

Table 1 Measurements of air pollutants used in the study, 
1993–2010

Air pollutant Number of 
monitored sites

Number of month-
specific measurements

Ozone 69 148
Nitrogen dioxide 15 180
Sulfur dioxide 35 180
Carbon monoxide 41 180
PM10 68 180
PM2.5 60 132

Abbreviation: PM, particulate matter.
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P,0.001), and pneumonia (0.0309±0.0093, P,0.001), and 

for CO and emphysema (0.0004±0.0001, P,0.0001) and 

asthma (0.0006±0.0001, P,0.001). For PM, reduced PM
2.5

 

levels were associated with reduction of emphysema mortal-

ity (0.0155±0.0066, P,0.05) and reduced PM
10

 levels, with 

reduction of asthma mortality (0.0204±0.0058, P,0.001). 

As expected, smoking significantly affected the mortality of 

each disease.

Sensitivity analysis
The sensitivity analysis demonstrated good stability of obtained 

results (see Table S1 for detailed information). In the sensitivity 

analysis, the association between pneumonia mortality and CO 

levels became significant (P=0.0655 in main versus P,0.0001 

in sensitivity analysis) when pneumonia was analyzed as an 

underlying cause of death. Recent studies have demonstrated 

that separation of comorbid conditions to underlying and 

secondary causes can be unreliable;23–25 however, for certain 

diseases with a predominantly acute course (eg, pneumonia), 

that may not be the case, and additional information can also 

be obtained from analysis of underlying causes of death. In 

addition, sensitivity analysis showed that during summer 

decreased mortality from emphysema was associated with 

lower levels of PM
10

 (P=0.2554 in main versus P=0.017 in 

sensitivity analysis), and statistical significance was observed 

for associations between pneumonia mortality and CO levels 

when ICD code changes were taken into account (P=0.0655 

in main versus P=0.018 in sensitivity analysis).

A county-level analysis also demonstrated the stability of 

most observations in the main analysis. Among associations 
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Figure 1 Levels of six air pollutants in North Carolina, 1993–2011. Individual pollutants were placed onto a single graph by utilizing arbitrary units to enable a collective 
visualization of the trends.
Abbreviation: PM, particulate matter.
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Figure 2 Seasonal fluctuations of air-pollutant levels: summer (red, 3 months) and winter (blue, 3 months), 1993–2011.
Abbreviation: PM, particulate matter.
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Figure 3 Trends in death rates for emphysema, asthma, and pneumonia in North Carolina, 1983–2010. Mortality rates were age-adjusted to the 2000 North Carolina population.
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Table 2 Demographic characteristics of North Carolina 
population with cause-specific respiratory mortality, 1993–2010

Demographic 
characteristic

Cause of death

Emphysema Asthma Pneumonia

Number of deaths 13,187 5,509 10,1374
Sex, n 
 � Males 

Females

 
7,951 (60.3%) 
5,236 (39.7%)

 
1,806 (32.8%) 
3,703 (67.2%)

 
48,517 (47.9%) 
52,857 (52.1%)

Race, n 
 � Caucasians 

African-Americans 
Other

 
11,866 (90.0%) 
1,237 (9.4%) 
84 (0.6%)

 
3,567 (64.8%) 
1,853 (33.6%) 
89 (1.6%)

 
82,759 (81.6%) 
17,665 (17.4%) 
950 (1.0%)

Age, n 
 � ,15 years old 

15–39 years old 
40–64 years old 
65+ years old

 
7 (0.1%) 
40 (0.3%) 
2,504 (19.0%) 
10,636 (80.7%)

 
103 (1.9%) 
429 (7.8%) 
1,723 (31.3%) 
3,254 (59.1%)

 
595 (0.6%) 
1,633 (1.6%) 
12,054 (11.9%) 
87,091 (85.9%)

Table 3 Associations between trends in emphysema, asthma, and pneumonia death rates and dynamics of air pollutants in North 
Carolina, 1992–2010

Potential health-impact factor Emphysema Asthma Pneumonia

Ozone, ppb 
Smoking

0.0061±0.0030, P,0.05 
0.0493±0.0056†, P,0.0001

0.0082±0.0056* 
0.0649±0.0105†, P,0.0001

-0.0011±0.0019*
0.0413±0.0034†, P,0.0001

SO2, ppb 
Smoking

0.0547±0.0106†, P,0.0001 
0.0399±0.0074†, P,0.0001

0.0598±0.0173†, P,0.001 
0.0563±0.0121†, P,0.0001

0.0309±0.0093†, P,0.001
0.0360±0.0063†, P,0.0001

NO2, ppb 
Smoking

0.0153±0.0062, P,0.01 
0.0456±0.0090†, P,0.0001

0.0270±0.0094, P,0.005 
0.0511±0.0140†, P,0.001

0.0030±0.0053*
0.0455±0.0076†, P,0.0001

CO, ppb 
Smoking

0.0004±0.0001†, P,0.0001 
0.0300±0.0083†, P,0.001

0.0006±0.0001†, P,0.0001 
0.0349±0.0129, P,0.01

0.0001±0.0001*
0.0388±0.0074†, P,0.0001

PM2.5, μg/m3 
Smoking

0.0155±0.0066, P,0.05 
0.0414±0.0072†, P,0.0001

0.0116±0.0083* 
0.0329±0.0093†, P,0.001

0.0044±0.0063*
0.0462±0.0067†, P,0.0001

PM10, μg/m3 
Smoking

0.0045±0.0039* 
0.0583±0.0069†, P,0.0001

0.0204±0.0058†, P,0.001 
0.0644±0.0109†, P,0.0001

–0.0015±0.0035*
0.0499±0.0057†, P,0.0001

Notes: For each air pollutant, the effect of smoking was evaluated. The effects of month-to-month fluctuations in disease-specific mortality for emphysema, asthma, and 
pneumonia are not shown in the table, but they also were evaluated for each month. *P.0.05; †significant under Bonferroni correction for multiple comparisons.
Abbreviation: PM, particulate matter.

that were significant under Bonferroni correction in the main 

analysis, associations between dynamics of SO
2
 and mor-

tality from emphysema (0.1399, P,0.001) and pneumonia 

(0.0698, P,0.001), and associations between changes of 

CO levels and asthma mortality (0.0004, P,0.05) were 

also significant in the sensitivity analysis. The association 

between CO and pneumonia mortality was also significant 

when analysis was performed on a county level (0.0002, 

P,0.001). Recall that this association was significant in 

the analysis using state-level data in two cases: when being 

corrected for changes of ICD codes and when only underly-

ing causes of deaths were considered as contributing to the 

cause-specific death (see detailed results in Table S1). The 

effects of dynamics of SO
2
 and PM

10
 on asthma mortality 

became nonsignificant (P.0.05), likely due to the small 

number of county-specific asthma deaths and due to the 

large fraction of zeroth death rates that were not successfully 

described by Equation 1.

Discussion
We found significant correlations between reduction of air 

pollutants and dynamics of deaths due to respiratory diseases 

during the period we studied. We need to contextualize 

these findings, particularly in regard to the multifactorial 

contributors to respiratory mortality. In general, COPD has 

been shown to correlate highly with air pollution linked 

to global urbanization,26 eg, higher prevalence of chronic 

bronchitis (odds ratio [OR] 2.26, confidence interval [CI] 

1.54–3.31), asthma (OR 1.57, CI 1.25–1.98), and emphysema 

(OR 2.98, CI 1.95–4.54) were observed in the meta-analyses 

of individuals exposed to urban air.27 Little is known about 

whether chronic, low-dose exposure to ambient air pollutants 

can exacerbate COPD progression.28,29 Several recent stud-

ies related respiratory symptoms to long-term rather than 

short-term effects of ambient particles,30 with the long-term 

exposure to PM
10

 increasing the risk of COPD.31

Changing air quality in North Carolina could be a good 

example of analysis of the trends of both improved air quality 

and respiratory mortality over almost two decades of obser-

vations. Improved air quality in North Carolina since the 

mid-1990s is related to a series of federal and state acts and 

regulations (see Table 4), including the national heavy-duty 

truck engine standards, reduction of NO
x
 emissions, the Clean 

Smokestacks Act, and new engine standards. Regulations of 

emissions of NO
x
, PM

10
, and CO appeared to be very effec-

tive in improving air quality in the state. Observed seasonal 

fluctuations of air-pollutants levels could be due to season-

dependent local dispersive conditions, breeze dynamics,  
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For example, correlations have been reported between asthma 

mortality and SO
2

51 and NO
2

52–56 levels, and between asthma 

severity (in children) and CO levels.43,44,57 Other studies 

reported that asthma mortality decreased earlier in response 

to improvement of air quality (eg, when compared to emphy-

sema or chronic bronchitis),51 with a decrease of asthma 

deaths occurring approximately 5 years earlier.

The effects of PMs on respiratory health and, in particular, 

on asthma have been studied predominantly for associations 

with prevalence of respiratory symptoms58–60 and emergency 

department visits or hospital admissions.28,61–63 It has been 

shown that asthma symptoms were exacerbated even at PMs 

concentrations being 60% below the safety limits for PMs (ie, 

that supposed not to affect the healthy population).64 However, 

information on associations of asthma mortality with long-

term exposure to PMs is sparse. In our study, reduction of PM
10

 

(and its seasonal fluctuations) was associated with decreased 

asthma mortality in North Carolina. Previous studies on PM
10

 

showed that elevated levels of PM
10

 were correlated with 

hospital admissions for asthma among patients aged 65+ 

years65 and children,44,57 and also with increased use of asthma 

medications among patients aged from 8 to 72 years old.66

Because air-quality and asthma-aggravation associations 

are reported from the studies typically performed in a single 

geographic region over a single season, individual study 

results may not be applicable to different populations and to 

longer weather/season cycles.43 Also, different components of 

PMs (eg, sulfates, nitrates, organic chemicals, metals, and soil 

or dust particles)12 may have different effects on the respiratory 

system.16,34,67 This makes comparisons between the studies 

challenging and may explain the diversity of results on health 

effects of PMs on both geographic and temporal scales.68

Air quality and pneumonia
In our study, a decrease in pneumonia deaths was associated 

with decreasing SO
2
 levels. Also, when pneumonia was con-

sidered as the underlying cause of death, lower pneumonia 

death rates were observed for lower CO levels. Some studies 

have linked an acute respiratory disease with higher levels of 

SO
2
 pollution, independently of cigarette smoking,69 while 

later studies have not confirmed these associations (however, 

some results were sensitive to the methods used to estimate 

air-pollutant levels).70,71 For CO, an association has been 

reported between its increased concentrations and higher 

pneumonia hospitalization.45

While some epidemiological and experimental stud-

ies have suggested relationships between NO
2
, ozone, and 

PMs and increased risk for viral respiratory infections,72 we 

differences in concentration process (eg, caused by the 

thinning of the air mixing layer in winter), and season-specific 

higher formation of certain compounds, eg, higher nitrate 

formation in the cold season leads to higher levels of NO
x
 in 

the air.32 Higher PM levels observed in North Carolina dur-

ing the summer are of additional concern for health effects 

being exacerbated by hot humid weather, especially during 

heat waves.33 For respiratory mortality, no threshold effect 

has been identified;34,35 therefore, detailed economic analysis 

is required to evaluate the expenses and benefits of keeping 

the levels of air pollutants extra low. For current regulations 

in the US, it has been shown that control of PM
2.5

 emissions 

could result in $100 billion of benefits annually.36

Air quality and emphysema
In our study, the association between reduced levels of ozone, 

SO
2
, NO

2
, CO, and PM

2.5
 and decreased mortality from 

emphysema were observed, with associations for SO
2
 and CO 

remaining significant under Bonferroni correction. In other 

studies, emphysema outcomes were usually analyzed as a part 

of COPD; nonetheless, our findings on emphysema are in gen-

eral agreement with these publications. For example, higher 

prevalence of visits to emergency departments for COPD and 

emphysema have been observed for higher SO
2
 levels37 (espe-

cially among older adults38); however, some studies showed 

that these associations may be attributable to SO
2
 serving as 

a surrogate of other substances.39 Few studies are available 

on the effects of outdoor CO on COPD.40,41 Our results on 

associations between lower CO levels and lower emphysema 

mortality are in agreement with studies that showed increased 

morbidity and mortality risks among patients with COPD.42–45 

Note that the impacts of CO could be effectively minimized 

by controlling transportation activities, which accounts for 

more than three-quarters of CO emissions in the US.42,46 While 

in our study associations with PM
2.5

 became nonsignificant 

under Bonferroni correction, in other studies higher levels of 

PM
2.5

 have been associated with higher admissions for COPD 

exacerbation47 and with increased COPD mortality.48–50 These 

differences could be due to the fact that the aforementioned 

studies were performed outside the US, had different patterns 

of seasonal fluctuations of PM levels in the air, and also were 

focused on specific populations (ie, older adults).

Air quality and asthma
We observed decreasing asthma mortality associated with 

lower levels of NO
2
, SO

2
, CO, and PM

10
, with the latter 

three pollutants remaining significant under Bonferroni 

correction. These results are in agreement with other studies. 
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did not find these associations in our study. Our results are 

in agreement with another study that did not find positive 

associations between PMs and pneumonia deaths (they found 

associations only for the group of never-smokers).73 However, 

most of the studies were performed on pneumonia morbidity 

(including hospitalizations and emergency department visits), 

while our study was on mortality. Also, multiple reports on 

associations between pneumonia risk and PMs levels come 

from international studies, eg, from Europe (where PMs 

levels peak in winter), while on the East Coast of the US they 

typically peak in summer,74 as we also observed in our study. 

While pneumonia is more frequent in late fall and winter, 

the relationships between outdoor air quality and health are 

supposed to be stronger in summer, when people spend more 

time outdoors. A study from Boston also supports our find-

ings: no associations with pneumonia hospital admissions 

were found in summer, while in winter the largest effect on 

pneumonia morbidity was reported not for PMs but for black 

carbon (a surrogate for traffic particles: 14.3% increase of 

pneumonia hospitalizations for 1.7 µg/m3 increase of black 

carbon).45 Higher risk of morbidity and mortality from acute 

respiratory infections has been also reported for children 

exposed to PM
10

.22,75–85 In our study, we did not estimate 

mortality risks specifically for children; future studies will 

be performed for age-groups that are potentially at highest 

risk (ie, children and older adults).

Methodological aspects  
and study limitations
In our approach, the number of observations sufficient to 

estimate model parameters was achieved by incorporating 

monthly changes of air-pollutant levels and respiratory 

mortality. One advantage of this approach is that the 

unobserved heterogeneity due to other factors (such as 

socioeconomic status, quality of health care, migration) is 

minimal, because these factors do not essentially vary from 

month to month. In contrast, this unobserved heterogeneity 

is typical for ecological studies with area-based design, and 

could result in the occurrence of additional biases if these 

variables are not sufficiently controlled.

One example of such a factor is the time trend describ-

ing improvements in the treatment of respiratory disease 

that occurred during the recent two decades and which 

contributed to decreasing trends of mortality from emphy-

sema, asthma, and pneumonia. Both improved air quality 

and vaccinations against pneumonia could lead to fewer 

hospital admissions, eg, pneumonia age-adjusted death 

rates started declining in the late 1990s, while the hospital 

discharge rate did not change significantly for patients older 

than 15 years.86–88 Although our approach with measurements 

at the month level minimizes the bias from this time trend 

(because only a 12th of our measurements reflect the annual 

time trend), improvements in treatment (as well as factors 

other than air pollution and smoking with significant time 

trends) should be taken into account in further studies. 

For example, further analysis of disease-specific visits to 

emergency departments would be important to validate 

the role of improved medical care in observed respiratory 

disease trends.

Other factors, such as changes in socioeconomic status, 

can also impact the dynamics of disease-specific mortality 

rates. However, it has been reported that for social factors, 

as well as for race, the effects of modification, eg, of PMs 

(ie, PM
10

) on total mortality were weak.20

In our study, the time pattern of smoking was chosen to 

reflect annual trends in respiratory mortality in addition to air 

pollution. Inclusion of one additional variable measured annu-

ally (ie, not on a monthly basis) could result in difficulty in 

distinguishing the effect of this variable and smoking. Smoking 

was chosen because its patterns are concordant with patterns of 

respiratory mortality, and because of many substantive results 

on the role of smoking in respiratory mortality (eg, findings that 

both smoking and exposure to air pollutants [eg, PM
2.5

] could 

exacerbate respiratory diseases).28,73 In our study, smoking 

had a significant stable effect on the dynamics of respiratory 

mortality from all three studied diseases. However, it can also 

reflect possible impacts of other variables with similar to smok-

ing time trends and associations with respiratory mortality.  

Better evaluation of smoking effects (including synergistic 

effects of smoking and air pollutants) could be achieved in 

studies with individual records on smoking status.

Study designs based on individual measurements of envi-

ronmental exposure and health outcomes (which are classic 

epidemiologic approaches) would be helpful for improve-

ment of the quality of estimates. However, such approaches 

are expensive and complex, in part due to the difficulty of 

measuring subjects’ exposure to the relatively low levels 

of pollutants in the air. Some studies on the use of outdoor 

monitoring-station data (compared with the personal indoor/

outdoor-exposure monitors) demonstrated that personal 

exposure to pollutants of outdoor origin was more closely 

related to outdoor air-pollutant levels than interpretations of 

personal monitoring data.58,89 Furthermore, the frequently 

high correlations between levels of certain pollutants in the 

air also make it difficult to identify the impact of a single 

agent on human health.17
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Changes in diagnostic criteria of respiratory diseases 

that happened during last two decades primarily affected 

the trends of disease incidence; however, in part, mortal-

ity trends were also affected. In children, diagnoses can 

transfer from chronic bronchitis and pneumonia to asthma, 

thus contributing to increasing trends in asthma prevalence 

(with its recent stabilization) and health care utilization.90 If 

the person dies from pneumonia, but also had an underlying 

condition of which the pneumonia was probably a result, than 

that underlying disease but not pneumonia is considered the 

cause of death in the death certificate, and thus fewer deaths 

are directly attributable to pneumonia.86 Although asthma 

death rates increased from 1980 to the mid-1990s, replaced 

ICD codes from the ninth to the tenth revision makes it chal-

lenging to evaluate the decline in asthma mortality since the 

late-1990s.91,92 With regard to this problem, it has been shown 

that decline in asthma mortality that occurred from 1998 to 

1999 included approximately 11% of decline that resulted 

from the changes during the ICD codes transition; then, 

under ICD-10, asthma death rates continued declining.91  

Because no definitive asthma laboratory tests exist, asthma 

estimates rely on the physician, who also should accurately 

attribute the cause of death to asthma; therefore, the reli-

ability of the death certificates has been questioned (eg, 

for the chance of misreporting the cause of death in older 

persons with comorbid conditions). Large well-designed 

studies have concluded that asthma death coding has 99% 

specificity and low sensitivity (42%), and asthma as a cause 

of death was underreported in preference to COPD in all 

age-groups.91,93

Conclusion
We observed temporal regional associations between 

long-term dynamics of decreasing death rates of emphy-

sema, asthma, and pneumonia and reductions of the levels 

of certain air pollutants in North Carolina. Our results 

support the hypothesis that improvement in air quality, 

especially declines in SO
2
, CO, and PM

10
 levels in the air, 

contributed to the improved respiratory health of the North 

Carolina population. Since other factors (in addition to the 

studied air pollutants) might also account for improved 

health outcomes, ultimately caution should be exercised 

in inferring cause–effect relations.
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Table S1 Results of the sensitivity analysis

Potential health-impact factor Emphysema Asthma Pneumonia

 
Ozone, ppb 
Smoking

Analysis 1 (ICD-9/10)
0.0056±0.0029, P.0.05
0.0433±0.0057, P,0.0001

Analysis 1 (ICD-9/10)
0.0052±0.0050, P.0.05
0.0427±0.0097, P,0.0001

Analysis 1 (ICD-9/10)
-0.0011±0.0019, P.0.05
0.0411±0.0036, P,0.0001

 
Ozone, ppb  
Smoking

Analysis 2 (summer)
0.0043±0.0069, P.0.05
0.0777±0.0159, P,0.0001

Analysis 2 (summer)
-0.0004±0.0085, P.0.05
0.1140±0.0205, P,0.0001

Analysis 2 (summer)
-0.0046±0.0024, P.0.05
0.0403±0.0051, P,0.0001

 
Ozone, ppb  
Smoking

Analysis 3 (winter)
0.0092±0.0037, P,0.01
0.0377±0.0066, P,0.0001

Analysis 3 (winter)
0.0004±0.0098, P.0.05
0.0104±0.0153, P.0.05

Analysis 3 (winter)
0.0052±0.0056, P.0.05
0.0241±0.0101, P,0.05

 
Ozone, ppb  
Smoking

Analysis 4 (underlying)
0.0039±0.0031, P.0.05
0.0524±0.0056, P,0.0001

Analysis 4 (underlying)
-0.0003±0.0084, P.0.05
0.0682±0.0156, P,0.0001

Analysis 4 (underlying)
0.0054±0.0049, P.0.05
0.0814±0.0097, P,0.0001

 
SO2, ppb  
Smoking

Analysis 1 (ICD-9/10)
0.0502±0.0108, P,0.0001
0.0361±0.0075, P,0.0001

Analysis 1 (ICD-9/10)
0.0289±0.0159, P.0.05
0.0375±0.0109, P,0.001

Analysis 1 (ICD-9/10)
0.0331±0.0094, P,0.001
0.0379±0.0064, P,0.0001

 
SO2, ppb  
Smoking

Analysis 2 (summer)
0.0551±0.0189, P,0.05
0.0651±0.0145, P,0.0001

Analysis 2 (summer)
0.0535±0.0231, P,0.05
0.0978±0.0188, P,0.0001

Analysis 2 (summer)
0.0027±0.0077, P.0.05
0.0345±0.0052, P,0.0001

 
SO2, ppb  
Smoking

Analysis 3 (winter)
0.0823±0.0243, P,0.001
0.0386±0.0167, P,0.0001

Analysis 3 (winter)
0.0298±0.0357, P.0.05
0.0432±0.0247, P.0.05

Analysis 3 (winter)
0.0596±0.0250, P,0.05
0.0194±0.0170, P.0.05

 
SO2, ppb  
Smoking

Analysis 4 (underlying)
0.0358±0.0126, P,0.005
0.0471±0.0087, P,0.0001

Analysis 4 (underlying)
0.0387±0.0259, P.0.05
0.0724±0.0180, P,0.0001

Analysis 4 (underlying)
0.1094±0.0193, P,0.0001
0.0666±0.0140, P,0.0001

 
NO2, ppb  
Smoking

Analysis 1 (ICD-9/10)
0.0159±0.0062, P,0.01
0.0367±0.0094, P,0.0001

Analysis 1 (ICD-9/10)
0.0281±0.0084, P,0.001
0.0179±0.0129, P.0.05

Analysis 1 (ICD-9/10)
0.0029±0.0053, P.0.05
0.0469±0.0079, P,0.0001

 
NO2, ppb  
Smoking

Analysis 2 (summer)
0.0434±0.0114, P,0.0001 
0.0410±0.0167, P,0.01

Analysis 2 (summer)
0.0160±0.0163, P.0.05
0.0987±0.0235, P,0.0001

Analysis 2 (summer)
0.0049±0.0051, P.0.05
0.0306±0.0067, P,0.0001

 
NO2, ppb  
Smoking

Analysis 3 (winter)
0.0135±0.0149, P.0.05
0.0621±0.0203, P,0.005

Analysis 3 (winter)
0.0224±0.0196, P.0.05
0.0352±0.0263, P.0.05

Analysis 3 (winter)
-0.01101±0.0145, P.0.05
0.0591±0.0199, P,0.005

 
NO2, ppb  
Smoking

Analysis 4 (underlying)
0.0024±0.0072, P.0.05
0.0590±0.0104, P,0.0001

Analysis 4 (underlying)
0.0385±0.0133, P,0.005
0.0477±0.0204, P,0.05

Analysis 4 (underlying)
0.0098±0.0114, P.0.05
0.0986±0.0171, P,0.0001

 
CO, ppb  
Smoking

Analysis 1 (ICD-9/10)
0.0004±0.0001, P,0.0001
0.0299±0.0084, P,0.001

Analysis 1 (ICD-9/10)
0.0002±0.0001, P.0.05
0.0342±0.0120, P,0.01

Analysis 1 (ICD-9/10)
0.0002±0.0001, P,0.05
0.0386±0.0073, P,0.0001

 
CO, ppb  
Smoking

Analysis 2 (summer)
0.0013±0.0003, P,0.0001
0.0510±0.0149, P,0.001

Analysis 2 (summer)
0.0017±0.0004, P,0.0001
0.0766±0.0179, P,0.0001

Analysis 2 (summer)
0.0002±0.0001, P.0.05
0.0298±0.0057, P,0.0001

 
CO, ppb  
Smoking

Analysis 3 (winter)
0.0005±0.0001, P,0.001
0.0267±0.0202, P.0.05

Analysis 3 (winter)
0.0007±0.0002, P,0.0001
-0.0173±0.0258, P.0.05

Analysis 3 (winter)
0.0001±0.0002, P.0.05
0.0454±0.0211, P,0.05

 
CO, ppb  
Smoking

Analysis 4 (underlying)
0.0001±0.0001, P.0.05
0.0501±0.0101, P,0.0001

Analysis 4 (underlying)
0.0008±0.0002, P,0.0001
0.0334±0.0194, P.0.05

Analysis 4 (underlying)
0.0010±0.0001, P,0.0001
0.0352±0.0150, P,0.05

 
PM2.5, μg/m3  
Smoking

Analysis 1 (ICD-9/10)
0.0155±0.0066, P,0.05
0.0414±0.0072, P,0.0001

Analysis 1 (ICD-9/10)
0.0116±0.0083, P.0.05
0.0329±0.0093, P,0.001

Analysis 1 (ICD-9/10)
0.0044±0.0063, P.0.05
0.0462±0.0067, P,0.0001

 
PM2.5, μg/m3  
Smoking

Analysis 2 (summer)
0.0207±0.0113, P.0.05
0.0578±0.0152, P,0.0001

Analysis 2 (summer)
0.0014±0.0105, P,0.05
0.0797±0.0141, P,0.0001

Analysis 2 (summer)
0.0016±0.0045, P.0.05
0.0352±0.0060, P,0.0001

(Continued)
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Table S1 (Continued)

Potential health-impact factor Emphysema Asthma Pneumonia

 
PM2.5, μg/m3  
Smoking

Analysis 3 (winter)
0.0224±0.0168, P.0.05
0.0498±0.0154, P,0.001

Analysis 3 (winter)
0.0195±0.0186, P.0.05
0.0049±0.0168, P.0.05

Analysis 3 (winter)
0.0039±0.0214, P.0.05
0.0446±0.0193, P,0.05

 
PM2.5, μg/m3  
Smoking

Analysis 4 (underlying)
0.0030±0.0072, P.0.05
0.0560±0.0078, P,0.0001

Analysis 4 (underlying)
0.0030±0.0137, P.0.05
0.0366±0.0154, P,0.05

Analysis 4 (underlying)
-0.0047±0.0101, P.0.05
0.0667±0.0106, P,0.0001

 
PM10, μg/m3  
Smoking

Analysis 1 (ICD-9/10)
0.0025±0.0039, P.0.05
0.0521±0.0072, P,0.0001

Analysis 1 (ICD-9/10)
0.0125±0.0053, P,0.05
0.0395±0.0101, P,0.0001

Analysis 1 (ICD-9/10)
-0.0012±0.0035, P.0.05
0.0508±0.0059, P,0.0001

 
PM10, μg/m3  
Smoking

Analysis 2 (summer)
0.0169±0.0071, P,0.05
0.0714±0.0142, P,0.0001

Analysis 2 (summer)
0.0243±0.0083, P,0.05
0.1020±0.0176, P,0.0001

Analysis 2 (summer)
-0.0029±0.0026, P.0.05
0.0377±0.0050, P,0.0001

 
PM10, μg/m3  
Smoking

Analysis 3 (winter) 
-0.0104±0.0143, P.0.05
0.0828±0.0170, P,0.0001

Analysis 3 (winter)
0.0407±0.0180, P,0.05
0.0297±0.0213, P.0.05

Analysis 3 (winter)
-0.0135±0.0143, P.0.05
0.0569±0.0162, P,0.0005

 
PM10, μg/m3  
Smoking

Analysis 4 (underlying)
-0.0063±0.0047, P.0.05
0.0662±0.0078, P,0.0001

Analysis 4 (underlying)
0.0256±0.0084, P,0.005
0.0679±0.0163, P,0.0001

Analysis 4 (underlying)
0.0140±0.0074, P.0.05
0.0993±0.0133, P,0.0001

Notes: The following factors were tested: the potential effect of International Classification of Diseases (ICD) code changes (from ICD-9 to ICD-10) (analysis 1), the effects of 
air pollutants on mortality during the summer (analysis 2) and winter (analysis 3), and the association when only underlying causes of death contributed to the cause-specific 
death rates (analysis 4).
Abbreviation: PM, particulate matter.
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