33 research outputs found

    Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro

    Get PDF
    Objective Aims were to investigate sensitivity of various human and canine cancer cell lines to hyperthermia and the influence of particular treatment conditions, and to analyze the DNA-damage response and mode of cell death in cell line radiosensitized by hyperthermia. Additionally, we were interested in the involvement of HSP70 in radiosensitization. Methods Radiosensitization by hyperthermia was determined in a panel of human and canine cancer cell lines using clonogenic cell survival assay, as well as levels of heat shock proteins (HSPs) using immunoblotting. The influence of the hyperthermia-radiotherapy time gap, different temperatures and the order of treatments on clonogenicity of hyperthermia-sensitive A549 cells was investigated. Additionally, DNA damage and cell death were assessed by Comet assay and an apoptosis/necrosis assay. Further we induced transient knockdown in A549 cells to test HSP70’s involvement in radiosensitization. Results Out of eight cell lines tested, only two (A549 and Abrams) showed significant decrease in clonogenic cell survival when pre-treated with hyperthermia at 42˚C. Strong induction of HSP70 upon thermoradiotherapy (HT-RT) treatment was found in all cell lines. Transient knockdown of HSP70 in A549 cells did not result in decrease of clonogenic cell survival in response to HT-RT. Conclusion Tumor cell-type, temperature and order of treatment play an important role in radiosensitization by hyperthermia. However, hyperthermia has limited potency to radiosensitize canine cancer cells grown in a 2D cell culture setting presented here. DNA damage and apoptosis/necrosis did not increase upon combined treatment and cytosolic levels of HSP70 appear not to play critical role in the radiosensitization of A549 cells

    Effect of thyroid shielding during mammography : measurements on phantom and patient as well as estimation with Monte Carlo simulation

    Get PDF
    Background: During mammography, the thyroid is exposed to scattered radiation from breast tissue and device. This may increase the risk of radiation induced thyroid cancer. Methods: We investigated the scatter radiation exposition of the thyroid and the effect of a tailored thyroid protection in phantom and patient as well as by using Monte Carlo simulation (MCS). The protective effect of a modified thyroid protection, the relevance of the protective effect and acceptance by patients have been investigated. Results: Phantom and patient measurements provided higher values for the surface dose at thyroid position than expected from MCS (phantom 0.32 mGy; patients 0.38 mGy; MCS 0.16 mGy). Phantom measurements indicated scatter contributions from both breast tissue and collimator/tube system. The value found in our patient study is within the range of the literature (0.22-0.39 mGy). The thyroid protection significantly reduced the surface dose but the dose (0.016 mGy) was higher than that expected from the lead equivalent value. However, the impact of the collar to the effective dose was small (< 4%). The collar was not visible on mammograms. Conclusions: Scatter from the collimator/tube system contributed with 50% to the thyroid dose. Due to the relative small fraction of dose deposited in the thyroid when compared to the mean glandular dose to the breast, a collar is not mandatory in general. Not being associated with the risk of obscuring parts of mammograms, such a collar may be used for young women considering their higher radio sensitivity

    The MATCHIT automaton : exploiting compartmentalization for the synthesis of branched polymers

    Get PDF
    We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield

    A compiler framework to derive microfluidic platforms for manufacturing hierarchical, compartmentalized structures that maximize yield of chemical reactions

    Get PDF
    In this work, we propose a framework that derives the configuration of an artificial, compartmentalized, cell-like structure in order to maximize the yield of a desired output reactant given a formal description of the chemistry. The configuration of the structure is then used to compile G-code for 3D printing of a microfluidic platform able to manufacture the aforementioned structure. Furthermore, the compiler output includes a set of pressure profiles to actuate the valves at the input of the microfluidic platform. The work includes an outline of the steps involved in the compilation process and a discussion of the algorithms needed for each step. Finally, we provide formal, declarative languages for the input and output interfaces of each of these steps

    Methadone does not potentiate the effect of doxorubicin in canine tumour cell lines

    Get PDF
    Opioid receptor activation was shown to enhance the efficacy of anti-neoplastic drugs in several human cancer cell lines. In these cell lines, doxorubicin increased the number of opioid receptors and methadone concurrently enhanced cellular doxorubicin uptake. Triggered through lay press and media, animal owners started to challenge veterinary oncologists with questions about methadone use in anti-cancer therapy. Especially in veterinary medicine, where side effects of chemotherapy are tolerated to a lesser extent and hence smaller doses are given, agents potentiating chemotherapeutic agents would be an optimal approach to treatment. Canine transitional cell carcinoma cells (TCC, K9TCC), canine osteosarcoma cells (OSA, Abrams) and canine hemangiosarcoma cells (HSA, DAL-4) were incubated with different combinations of methadone, buprenorphine and doxorubicin, in order to test inhibition of cell proliferation. Opioid receptor density was assessed with fluorescence-activated cell sorting in drug native and doxorubicin pretreated cells. In TCC and OSA cell lines opioid receptor density increased after doxorubicin pretreatment. In combination treatment, however, we did not find significant potentiation of doxorubicin's inhibitory effect on proliferation in these cell lines. Neither was there a significant increase of the effect of doxorubicin when the opioids were added 24 hr before doxorubicin. Hence, we could not confirm the hypothesis that opioids increase the anti-proliferative effect of the anti-neoplastic drug doxorubicin in any of these canine tumour cell lines. The lack of effect on a cellular level does not warrant a clinical approach to use opioids together with doxorubicin in dogs with cancer

    Triple combination of lomustine, temozolomide and irradiation reduces canine glioma cell survival in vitro

    Get PDF
    Background: Combined chemoradiation offers a promising therapeutic strategy for dogs with glioma. The alkylating agents temozolomide (TMZ) and lomustine (CCNU) penetrate the blood-brain barrier, and doses for dogs are established. Whether such combinations are clinically advantageous remains to be explored together with tumour-specific markers. Objective: To investigate if triple combination of lomustine, temozolomide and irradiation reduces canine glioma cell survival in vitro. Methods: We evaluated the sensitising effect of CCNU alone and in combination with TMZ-irradiation in canine glioma J3T-BG cells and long-term drug-exposed subclones by using clonogenic survival and proliferation assays. Bisulphite-SEQ and Western Blot were used to investigate molecular alterations. Results: TMZ (200 μM) or CCNU alone (5 μM) reduced the irradiated survival fraction (4 Gy) from 60% to 38% (p = 0.0074) and 26% (p = 0.0002), respectively. The double-drug combination reduced the irradiated survival fraction (4 Gy) more potently to 12% (p < 0.0001). After long-term drug exposure, both subclones show higher IC50 values against CCNU and TMZ. For CCNU-resistant cells, both, single-drug CCNU (p = 0.0006) and TMZ (p = 0.0326) treatment combined with irradiation (4 Gy) remained effective. The double-drug-irradiation combination reduced the cell survival by 86% (p < 0.0001), compared to 92% in the parental (nonresistant) cell line. For TMZ-resistant cells, only the double-drug combination with irradiation (4 Gy) reduced the cell survival by 88% (p = 0.0057) while single-drug treatment lost efficacy. Chemoresistant cell lines demonstrated higher P-gp expression while MGMT-methylation profile analysis showed a general high methylation level in the parental and long-term treated cell lines. Conclusions: Our findings indicate that combining CCNU with TMZ-irradiation significantly reduces canine glioma cell survival. Such a combination could overcome current challenges of therapeutic resistance to improve overall patient survival

    A chemical compiler for the synthesis of branched oligomers on standardized chemical reaction structures

    Get PDF
    This research paper presents a chemical compiler developed to find optimal configurations of a platform for synthesizing specific branched oligomers in an artificial chemistry, along with exemplary compiler output and benchmarks where the platform configuration suggested by the compiler is compared to other configurations in simulation. The compiler operates as a pipeline with two stages: labelling and optimization. The report explains the structure of the compiler target and its interpretation, followed by a code walk-through of the compiler stages with code snippets and examples. The compiler can be used as a code generator for reactions in a chemical simulator and to derive loading schemes for multilevel droplets. The results obtained in simulations suggest that the container system can efficiently optimize the yield of coupled reaction networks and that multi-level droplets can lead to significant improvements

    Minimal models for spatially resolved population dynamics : applications to coexistence in multi – trait models

    Get PDF
    Spatial resolution is relevant for many processes in population dynamics because it may give rise to heterogeneity. Simulating the effect of space in two or three dimensions is computationally costly. Furthermore, in Euclidean space, the notion of heterogeneity is complemented by neighbourhood correlations. In this paper, we use an infinite-dimensional simplex as a minimal model of space in which heterogeneity is realized, but neighbourhood is trivial and study the coexistence of viral traits in a SIRS - model. As a function of the migration parameter, multiple regimes are observed. We further discuss the relevance of minimal models for decision support

    Tetramodal therapy with transurethral resection followed by chemoradiation in combination with hyperthermia for muscle-invasive bladder cancer: early results of a multicenter phase IIB study.

    Get PDF
    BACKGROUND Transurethral resection of bladder tumor (TUR-BT) followed by chemoradiation (CRT) is a valid treatment option for patients with muscle-invasive bladder cancer (MIBC). This study aimed to investigate the efficacy of a tetramodal approach with additional regional hyperthermia (RHT). METHODS Patients with stages T2-4 MIBC were recruited at two institutions. Treatment consisted of TUR-BT followed by radiotherapy at doses of 57-58.2 Gy with concurrent weekly platinum-based chemotherapy and weekly deep RHT (41-43 °C, 60 min) within two hours of radiotherapy. The primary endpoint was a complete response six weeks after the end of treatment. Further endpoints were cystectomy-free rate, progression-free survival (PFS), local recurrence-free survival (LRFS), overall survival (OS) and toxicity. Quality of life (QoL) was assessed at follow-up using the EORTC-QLQ-C30 and QLQ-BM30 questionnaires. Due to slow accrual, an interim analysis was performed after the first stage of the two-stage design. RESULTS Altogether 27 patients were included in the first stage, of these 21 patients with a median age of 73 years were assessable. The complete response rate of evaluable patients six weeks after therapy was 93%. The 2-year cystectomy-free rate, PFS, LRFS and OS rates were 95%, 76%, 81% and 86%, respectively. Tetramodal treatment was well tolerated with acute and late G3-4 toxicities of 10% and 13%, respectively, and a tendency to improve symptom-related quality of life (QoL) one year after therapy. CONCLUSION Tetramodal therapy of T2-T4 MIBC is promising with excellent local response, moderate toxicity and good QoL. This study deserves continuation into the second stage

    Role of HSP70 in response to (thermo)radiotherapy: analysis of gene expression in canine osteosarcoma cells by RNA-seq

    Get PDF
    Pre-treatment of tumors with hyperthermia is often used to increase the efficacy of radiotherapy. One of the main proteins induced in response to hyperthermia is heat shock protein 70 (HSP70). The aim of our study was to investigate up- and down-regulated genes in response to (thermo)radiotherapy in HSP70 proficient and deficient canine osteosarcoma cell line (Abrams), and functional role of HSP70 in the mechanism of thermoradiosensitization. Cells were transfected with negative control siRNA or siRNA targeting HSP70 and treated with hyperthermia (HT), radiotherapy (RT), and thermoradiotherapy (HTRT). RNA sequencing was used to analyze gene expression. Hyperthermia and thermoradiotherapy, but not radiotherapy alone, induced differential gene expression. We identified genes differentially expressed only in HSP70 knockdown (thus HSP70-dependent) cells in response to hyperthermia and thermoradiotherapy. Interestingly, cell proliferation but not clonogenicity and apoptosis/necrosis was affected by the HSP70 knockdown in response to thermoradiotherapy. The results suggest that HSP70 regulates expression of specific genes in response to hyperthermia and thermoradiotherapy. Further investigations into the role of specific genes regulated in a HSP70-dependent manner in response to thermoradiotherapy could pave a way into new, combinatorial treatment options for (canine) osteosarcoma and other cancer types
    corecore