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Abstract 
Spatial resolution is relevant for many processes in population 
dynamics because it may give rise to heterogeneity. Simulating 
the effect of space in two or three dimensions is 
computationally costly. Furthermore, in Euclidean space, the 
notion of heterogeneity is complemented by neighbourhood 
correlations. In this paper, we use an infinite-dimensional 
simplex as a minimal model of space in which heterogeneity is 
realized, but neighbourhood is trivial and study the coexistence 
of viral traits in a SIRS – model. As a function of the migration 
parameter, multiple regimes are observed. We further discuss 
the relevance of minimal models for decision support.   

Spatial Resolution in Population Dynamics 
It is well known that population dynamics in spatially 
resolved systems show features not observed in homogeneous 
systems (Sun et al., 2021). Spatially structured systems enable 
microenvironments that give rise to local “symmetry 
breaking” or spatial heterogeneity. Not all microenvironments 
have to be in the same state, even if the fundamental laws 
governing the local dynamics are the same everywhere. This 
spatial heterogeneity may result from stochastic effects and/or 
reaction-diffusion processes, e.g. shown in (Turing, 1990) or 
the complex dynamics emerging in seemingly simple bacteria 
(Govindarajan et al., 2012; Shapiro et al., 2009).  
A broad class of processes combine colocalization of 
individuals with the transfer of an attribute from an individual 
with this attribute to one without it. This transfer can conserve 
the attribute or replicate it. The former case is relevant in the 
study of conserved quantities in physics or economics, 
whereas the latter represents processes that one can 
understand as infections or, regarding information in societies, 
as knowledge transfer or teaching processes.  
As application, we study a minimal model of spatial 
resolution to a variant of the SIRS – model with two traits: 
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As usual, the variable S represents susceptibles, kI  infected, 
and kR  recovered. The index {1,2}∈k  represents the multiple 
traits. We set 1,2 2,1= ⇒ =k k . The parameter αk  models 
the infection, ρk recovery, ν k  waning immunity and ξk  
cross-infection. We emphasize that models as given in eqs. (1) 
are not restricted to diseases but can be transferred to, e.g., the 
spread of cultural innovations (Walker et al., 2021). 
In eqs. (1), the infection processes are modelled by a single 
parameter ,α ξk k  respectively. As a motivation for the 
presented minimal model relevant, these parameters combine 
(at least) three variables: The infectivity of the I , the 
susceptibility of , kS R  and the contact rate of the infected and 
the susceptibles.  
In a conventional SIRS model, there is no easy way to 
disentangle physiological parameters (infectivity, 
susceptibility) from the influence of the contact rate. One 
could think that doubling the contact rate can be represented 
by a twofold increased infection rate αk . This holds for low 
physiological infection/susceptibility parameters, but 
saturation effects kick in for higher values. This can easily be 
understood if one considers that it is not the number of 
contacts alone but also the time of exposure that influences 
the risk of infection. Transmission processes which require 
proximity and time of exposure (thereby limiting the number 
of potential sources of infection) eventually reach a saturation 
level for the infectivity. 

Minimal Models: Epidemiology on an Infinite 
Dimensional Simplex 

Besides understanding a specific situation, we claim that there 
is an interest in studying generic phenomena resulting from 
spatial resolution. Whereas a study that aims to understand the 
details of a specific epidemiological development should map 
the real world as precisely as possible (complete models), a 
study focusing on generic properties should work with a space 
as simple as possible.  
The notion of “space” combines a variety of mathematical 
structures; first, the concept of space implies that one can 
distinguish between here and there. Furthermore, spaces such 



as the three-dimensional Euclidean space allow to quantify the 
“theres” (means “non-heres”) by a notion of distance and 
thereby invoking the notion of neighbourhood and 
neighbourhood correlation. Studying such spaces gives 
detailed insight into the processes taking place in them but is 
computationally expensive.  
Probably the simplest structure that allows some form of 
spatial heterogeneity but with only a trivial notion of  
neighbourhood is an infinite-dimensional simplex. For our 
purposes, a simplex is a set of discrete locations or nodes that 
are all mutually connected. If the number of these locations 
goes to infinity, one speaks of an infinite-dimensional 
simplex. In our investigations, a location contains two sites, 
see Fig. 1. Each site is occupied by a representative of the five 
species , , kkS I R  or empty (occupied by a V ). As discussed in 
(Füchslin et al., 2019; McCaskill et al., 2001), the key point of 
such a simplex is that it enables to implement a mean-field 
formulation of a dynamics as given in eq. (1). The 
fundamental observation underlying this is that since all 
locations experience the same neighbourhood (all locations 
are mutually connected), the probability of being in a specific 
state is equal for all locations. Influx of a representative X of 
one of the species into a location is determined by a mobility 
parameter m , the number of empty sites on the location and 
the average X  on all other locations, see Fig. 1.  
More formally, if U  denotes the set of all allowed states 

1 2 1 2( , , , , )=u s i i r r   and ( )x u  gives the number of x  in a state
∈u U , we must calculate the (time-dependent) 

probabilities 1 2 1 2( , , , , ; )P s i i r r t . Because we have two sites per 
location, it must hold 1 2 1 20 2≤ + + + + ≤s i i r r . The 
probabilities 1 2 1 2( , , , , ; )P s i i r r t  are combined into a vector ( )



P t  
, and one writes the dynamics of the system as: 

( ) ( ( )) ( )=


 dP t A P t P t
dt

(2) 

Here ( ( ))


A P t  is a matrix that depends on ( )


P t . To illustrate 
the construction of ( ( ))



A P t , we analyze the dynamics of the 
state 1 2 1 21, 1, 0, 0, 0= = = = =s i i r r . This state can be reached or 
left either by internal epidemiological dynamics  (eqs. (1)) or 
by influx from some other site.  

Figure 1: Longterm Averages as a function of the migration parameter 
m . The other parameters are: 21 12 0.03, 0.04,3.0, 2.0,α α ξ ξ == ==  

121 20.12, 0.04, 0.01ρ ρ ν ν= = = = . Time is given in days. The inlet shows 
a simplex of six locations with two sites at each location.  

For the internal dynamics, we get: 
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For state changes induced by migration, we get: 
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The averages X  are (with 1 1 222= − − − − −V S I I R R ) : 

( ) ( ; )
∈

= ∑
u U

X x u P u t (5) 

As an example, we use this formalism to study an essential 
effect of spatial heterogeneity, namely the coexistence of 
different traits in a population. In recent times, questions 
concerning the coexistence of different traits of viruses gained 
attention in epidemiology (Ackleh et al., 2016; Guo & Wang, 
2022; Roberts et al., 2015). As it turns out, the coexistence of 
traits appears in our model, see Figure 1, where the averages 
the system approaches after long time are shown as a function 
of m  . We distinguish regions A, B, C, and D in which either 
no, one or both traits exist. The simple model we present 
illustrates an effect which is relevant with respect to public 
health: In case of co-existing traits, reducing m  may decrease 
one trait, but lead to an increase of the other trait. This 
phenomenon is no surprise but needs to be considered, if the 
two traits differ in the severity of the disease they cause.    

Discussion 
It is clear that the presented model is not suited for predicting 
the course of an actual pandemic. The model is much too 
simple (no age dependency, et cetera), and the spatial 
structure does not reflect any actual geography. However, it 
still teaches us some important lessons: First, the coexistence 
of different viral traits is potentially possible but depends on 
the migration rate m (equivalent to the contact rate). Second, 
and more important for decision support, a decrease in the 
contact rate may suppress one trait that is dominant at higher 
contact rates. The decrease may, however, give room for a 
trait with different properties.  
The SARS-CoV-2 pandemic resulted in a massive increase of 
interest in mathematical and model-based epidemiology. In a 
recent review (Gnanvi et al., 2021), the authors compare 
different simulation techniques for modelling the dynamics of 
the SARS-CoV-2 pandemics (Compartment models of the 
SIR- or SEIR type (46%). Only 1.3% of the studies used 
agent-based models). Most of these studies focused on a 
particular case in a specific geographic setting. This approach 
is sensible, particularly because the contact structure of the 
populations in different countries is known with a resolution 
concerning age and type of activity (Fumanelli et al., 2012; 
Prem et al., 2017). These are “complete” models in that they 
try to include as much of reality as possible. This comes at a 
price: The models contain many parameters and, in 
consequence, are difficult to calibrate. In contrast, minimal  
models may give only qualitative insight into the processes 
they analyze. However, this comes with the advantage that it 
is often easy to relate cause and effect. More concretely, 
concerning epidemiology, even if minimal models are not 
suited as tools for prediction, they justify a detailed scrutiny of 
variants of minor importance. This is because these variants 



may become relevant after changing system parameters, e.g. 
via non-pharmaceutical interventions.  
Giving a justification for (expensive) observations is highly 
relevant in decision support; it is an example of the value and 
importance of modelling for politics and society and helps 
strengthen the role of science and artificial life, in particular.  
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