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Role of HSP70 in response 
to (thermo)radiotherapy: analysis 
of gene expression in canine 
osteosarcoma cells by RNA‑seq
Katarzyna J. Nytko 1,2,3*, Pauline Thumser‑Henner 1,2,3, Giancarlo Russo4, 
Mathias S. Weyland 5,6 & Carla Rohrer Bley 1,2,3

Pre‑treatment of tumors with hyperthermia is often used to increase the efficacy of radiotherapy. 
One of the main proteins induced in response to hyperthermia is heat shock protein 70 (HSP70). 
The aim of our study was to investigate up‑ and down‑regulated genes in response to (thermo)
radiotherapy in HSP70 proficient and deficient canine osteosarcoma cell line (Abrams), and functional 
role of HSP70 in the mechanism of thermoradiosensitization. Cells were transfected with negative 
control siRNA or siRNA targeting HSP70 and treated with hyperthermia (HT), radiotherapy (RT), and 
thermoradiotherapy (HTRT). RNA sequencing was used to analyze gene expression. Hyperthermia 
and thermoradiotherapy, but not radiotherapy alone, induced differential gene expression. We 
identified genes differentially expressed only in HSP70 knockdown (thus HSP70‑dependent) 
cells in response to hyperthermia and thermoradiotherapy. Interestingly, cell proliferation but 
not clonogenicity and apoptosis/necrosis was affected by the HSP70 knockdown in response to 
thermoradiotherapy. The results suggest that HSP70 regulates expression of specific genes in 
response to hyperthermia and thermoradiotherapy. Further investigations into the role of specific 
genes regulated in a HSP70‑dependent manner in response to thermoradiotherapy could pave a way 
into new, combinatorial treatment options for (canine) osteosarcoma and other cancer types.

Radiotherapy resistance is one of the major obstacles in clinical cancer treatment of various tumor types, includ-
ing osteosarcomas. Intrinsic resistance is caused by high levels of tumor hypoxia and presence of cancer stem 
cells, which are highly radio-resistant and are responsible for the tumor relapse after  treatment1. Several strate-
gies were developed to increase the efficacy of radiotherapy, including co-treatment with chemotherapeutics 
and also, pre-treatment with  hyperthermia2,3. Hyperthermia is a second-line treatment modality, used mostly in 
refractory tumors (breast cancer, cervix carcinoma, head and neck cancer) and in combination with chemo- and 
 radiotherapy4. Also in the veterinary oncology, hyperthermia has been used to treat different types of cancer 
(including (osteo)sarcomas)) in companion animals, in combination with  radiotherapy5,6.

One of the main proteins induced in response to hyperthermia are heat shock proteins (HSPs)7. Several HSPs 
have been identified so far with different molecular weights and differential response to heat. Among them, 
HSP70 has been also shown to be overexpressed in many types of human  tumors7,8. The role of HSP70 and other 
HSPs is to assist the protein folding processes and act as molecular  chaperones9. Many regulatory proteins, includ-
ing transcriptions factors, kinases and receptors, are known to be controlled by  HSP709,10. Therefore, HSP70 
plays and important role in maintaining cellular homeostasis and can indirectly influence gene expression (for 
example, by regulating protein folding of transcription factors). In response to the cellular stress, heat shock 
transcription factor (HSF) is activated and it increases the expression of  HSP7011. Interestingly, HSP70 interacts 
with HSF to negatively regulate gene expression. Moreover, HSP70 has been also showed to play an important 
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role in posttranscriptional gene expression of selected  genes12. Thus, apart from protecting cellular proteins 
during stress, HSP70 might be also directly or indirectly regulating gene expression.

We have previously shown, that Abrams canine osteosarcoma cell line was radiosensitized by hyperthermia 
pre-treatment13. Moreover, Abrams have low basal but strongly heat-inducible levels of HSP70. Therefore, we were 
interested in the gene expression analysis of Abrams cells in response to radiotherapy, hyperthermia and combi-
nation of both in HSP70-proficient and HSP70 knockdown Abrams cells. We used RNA sequencing technology 
and quantitative RT-PCR to identify down- and up-regulated factors, clonogenic cell survival and proliferation 
assay to measure response to treatment, and apoptosis/necrosis assay to investigate cell death after treatment.

Methods
Cell culture. Abrams cells were obtained from Prof. Robert Rebhun (University of California, Davis, Cali-
fornia, USA) and cultured as described  before13. Cells were routinely screened for Mycoplasma contamination.

Hyperthermia treatment. Cells were treated in a humidified incubator with 5%  CO2. The total treatment 
time with hyperthermia was 90 min, including the 30 min of heating phase (37–42 °C) and 60 min at 42 °C 
(plateau). Directly after hyperthermia (time interval between hyperthermia and irradiation was approximately 
10 min), cells were transferred to radiation facility and irradiated. Prior to this study, the heating profile of the 
incubator used for hyperthermia treatments was characterized thoroughly by measurements of the temperature 
of the cell culture dish (standard 10-cm dish used for clonogenic assay)13. Based on data from three runs, thermal 
doses were calculated according to the cumulative equivalent minutes at 43 °C iso-effect model  (CEM43)

14. The 
mean thermal dose (CEM_43) was found to be 10.9 ± 0.8 min. A script written in python was used to implement 
the following calculation:

where ti denotes the duration of time interval i , and Ti denotes the average temperature in °C during said time 
interval. As indicated in Nytko et al., the measurement was acquired with a Bowman probe (SPEAG/IT’IS, 
Zurich, Switzerland), and acquisitions were taken once per  second13.

Irradiation treatment. 6MV photon radiation at a dose-rate of 600MU/Min (approx. 1  Gy/min) were 
used, and delivered by a linear accelerator (Clinac iX, Varian Medical Systems, Palo Alto, USA). Appropriated 
dose build-up was ensured by penetrating layers of plexiglas and the set-up was verified dosimetrically by a 
medical physicist.

siRNA transfection and treatment. Cells were seeded in a 6-well plate at the density of 50,000 cells/
well the day before transfection (adapted from Nytko et al.)13. Cells were transfected with 25 pmol of custom 
made siRNA against canine HSP70 (siRNAsequences in Supplementary Information 1; Thermo Fisher Scien-
tific) and with Silencer Select Negative Control No. 1 siRNA (Cat. No. 4390843, Thermo Fisher Scientific) using 
Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific). 24  h after transfection medium 
was exchanged and cells were treated with hyperthermia, irradiation or combination of both. RNA and protein 
lysates samples were collected 24 h after treatment with irradiation (48 h after transfection, Fig. 1). Three inde-
pendent experiments were performed resulting in a total of 24 samples (8 samples per experiment).

RNA isolation and quantitative RT‑PCR. RNA was isolated using RNeasy Mini Kit according to manu-
facturer’s protocol (Qiagen). Reverse transcription (RT) was performed using the iScript cDNA Synthesis Kit 
(BioRad) according to the manufacturer’s protocol (adapted from Ettlin et al.)15. KAPA PROBE FAST qPCR Kit 
Master Mix (2 × Universal reagents (Kapa Biosystems with 2 μL cDNA per reaction was used for quantitative 
polymerase chain reaction (qPCR. Samples were run in duplicates using the CFX384 Touch Real-Time PCR 
detection system (BioRad, Hercules, CA, US. The primers were customized Taqman gene expression assays 
(Thermo Fisher Scientific; Supplementary Information 1.

CEM43 =

n
∑

i=1

ti · R
(43−Ti)with R =

{

0.25 if Ti < 43◦C

0.5 otherwise

Figure 1.  Illustration of treatment scheme of Abrams cells with hyperthermia (HT), radiotherapy (RT) and 
thermoradiotherapy (HTRT) before collecting RNA samples for RNA sequencing.
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RNA sequencing and analysis. The RNA sequencing was performed at the Functional Genomics Center 
Zürich.

Library preparation. The method was adapted from Zatta et  al.16. Briefly, RNA quality was tested with 
a Qubit (1.0) Fluorometer (Life Technologies, California, USA) and a Bioanalyzer 2100 (Agilent, Waldbronn, 
Germany). Samples with a 260 nm/280 nm ratio between 1.8 and 2.1 and a 28S/18S ratio between 1.5 and 2 were 
used for subsequent steps with TruSeq RNA Sample Prep Kit v2 (Illumina, Inc, California, USA). Total RNA 
samples (600 ng) were poly A enriched and then reverse-transcribed into double-stranded cDNA. The cDNA 
samples were fragmented, end-repaired and polyadenylated before ligation of TruSeq adapters containing the 
index for multiplexing. Fragments containing TruSeq adapters on both ends were selectively enriched with PCR. 
Qubit (1.0) Fluorometer and the Caliper GX LabChip GX (Caliper Life Sciences, Inc., USA) were used to vali-
date the quality and quantity of the enriched libraries. The product is a smear with an average fragment size of 
approximately 260 bp. The libraries were normalized to 10 nM in Tris–Cl 10 mM, pH8.5 with 0.1% Tween 20.

Cluster generation and sequencing. The method was adapted from Zatta et al.16. The TruSeq SR Cluster 
Kit HS4000 (Illumina, Inc, California, USA) was used for cluster generation using 2 nM of pooled normalized 
libraries on the cBOT. Sequencing were performed on the Illumina HiSeq 4000 single end 125 bp using the 
TruSeq SBS Kit HS4000 (Illumina, Inc, California, USA).

Data analysis and statistics. Reads were quality-checked with FastQC. Reads at least 20 bases long, with 
a tail phred quality score greater than 15 and an overall average phred quality score greater than 20 were aligned 
to the reference genome and transcriptome (FASTA and GTF files, respectively, downloaded from the Ensembl, 
genome build Canis Familiaris 3.1) with STAR v.2.5.4 (1) with default settings for single end  reads17.

Distribution of the reads across genomic isoform expression was quantified using the R package Genomi-
cRanges (2) from Bioconductor Version 3.1017. Differentially expressed genes were identified using the R package 
edgeR (3) from Bioconductor Version 3.1019.

Sample clustering is shown using principal component analysis (PCA) in R version 3.6.0. For the PCA plot, 
we transformed the counts previously calculated using the regularized logarithm transformation or rlog function 
from DESeq2 (1.24.0) package. The heatmaps were generated using the R function heatmap2. Venn diagrams 
were created using BioVenn (http://www.biove nn.nl;20). Functional classification and statistical enrichment test 
was performed using PANTHER software (http://panth erdb.org;21).

Statistics. Statistical analysis was performed using GraphPad Prism8 (GraphPad Software, Inc., San Diego, 
California, USA). One-column t test with Bonferroni correction was used to compare the treatment-group to the 
control group (set as 1), unpaired t-test was used to compare two treatment groups to each other. P values below 
0.05 were considered statistically significant and denoted with a star (*), two stars (**) were used for p values 
below 0.01 and three stars (***) were used for p values falling below 0.001.

Immunoblotting, clonogenic, proliferation and apoptosis/necrosis assay are described in Supplementary 
Information 1.

Results
Effect of HSP70 downregulation on gene expression in Abrams cells. First, we checked the level 
of HSP70 protein downregulation in Abrams cells. Initially, two different siRNA sequences targeting HSP70 
were tested which resulted in the same knockdown efficiency (Supplementary Fig. 1). Therefore, for the RNA 
sequencing experiment we proceeded only with siRNA No. 1. The protein levels of HSP70 were strongly influ-
enced by the hyperthermia and combined treatment in negative control siRNA transfected cells but the protein 
was absent in control (non-treated), hyperthermia and combination-treated HSP70 knockdown cells (Fig. 2A). 
Additionally, we measured HSP70 mRNA, which was significantly downregulated in knockdown cells (Fig. 2B). 
The comparison of gene expression between Abrams cells transfected with negative control siRNA and siRNA 
targeting HSP70 revealed 474 differentially expressed genes (p < 0.01 and log ratio > 0.5; the 500 most significant 
genes in Supplementary Table 1). Functional classification according to the biological processes revealed that 
cellular processes, followed by the metabolic processes were the two functional categories mostly populated 
by the genes identified by the differential analysis (Supplementary Fig. 2A). Enrichment test revealed that the 
cellular component organization or biogenesis was the most significantly enriched biological process (Supple-
mentary Fig. 2B). The top 19 differentially expressed genes and HSP70 in experimental triplicates are shown 
in a heatmap (Fig. 3A). The most significantly downregulated gene in the knockdown cells are glycoprotein 
nmb (GPNMB), followed by lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) and matrix metallo-
peptidase 1 (MMP1). Interestingly, among the top 20 most significantly altered genes, only two are significantly 
induced in the knockdown cells, namely RAS protein activator like 2 (RASAL2) and very low-density lipopro-
tein receptor (VLDLR). As expected, HSP70 was significantly downregulated in the knockdown cells (log2 ratio 
– 2.86; p = 0.000744). We confirmed the down- and up-regulation of selected genes by quantitative real-time 
polymerase chain reaction (qRT-PCR) in an independent experiment (Fig. 3B).

Effects of radiotherapy, hyperthermia and thermoradiotherapy on gene expression. Prin-
cipal component analysis was performed to reveal the distances between individual samples in control and 
knockdown cells exposed to all treatment types (Fig. 4). It shows that negative control siRNA transfected cells 
and knockdown cells separate from each other, as well as treatment with hyperthermia (HT) and thermora-

http://www.biovenn.nl
http://pantherdb.org
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Figure 2.  HSP70 is downregulated in osteosarcoma cells transfected with siRNA. Levels of HSP70 protein 
analyzed by immunoblot (A) and HSP70 mRNA analyzed by qRT-PCR (B) in negative control and HSP70 
knockdown cells. Full-length blots are presented in Supplementary Fig. 3.

Figure 3.  GPNMB, LYVE1 and MMP1 are the most significantly downregulated genes in HSP70 knockdown 
cells. Heatmap of normalized counts of the top 19 differentially expressed genes and HSP70 in negative control 
and HSP70 knockdown cells in experimental replicates (n = 3; A). mRNA levels of selected differentially 
expressed genes analyzed by qRT-PCR (B).
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diotherapy (HTRT) from non-treated cells. Radiotherapy-treated cells (RT), however, do not separate from the 
respective non-treated cells in both, control and knockdown cells.

Radiotherapy. In the negative control siRNA transfected cells, radiotherapy alone resulted in only 25 dif-
ferentially expressed genes (p < 0.01 and log ratio > 0.5; the 500 most significant genes in Supplementary Table 2). 
In the HSP70 knockdown cells, irradiation alone resulted in even less, only 12 differentially expressed genes 
(p < 0.01 and log ratio > 0.5; Supplementary Table 3). In both comparisons, control (not-treated) over irradiated 
cells were compared. In both sets of comparisons, the false discovery rate (FDR) was close to 1, therefore we did 
not proceed with the analysis of these genes and further comparisons will focus mainly on hyperthermia- and 
thermoradiotherapy-induced genes.

Hyperthermia. Hyperthermia alone resulted in 237 differentially expressed genes in negative control siRNA 
transfected cells and 131 in the HSP70 knockdown cells (p < 0.01 and log ratio > 0.5; the 500 most significant 
genes in Supplementary Tables 4 and 5), when control (non-treated) was compared to hyperthermia-treated 
cells.

Thermoradiotherapy. Interestingly, the combined treatment, thermoradiotherapy, resulted in 638 differ-
entially expressed genes in negative control siRNA transfected cells and 349 in HSP70 knockdown cells, respec-
tively (p < 0.01 and log ratio > 0.5; the 500 most significant genes in Supplementary Tables 6 and 7), when control 
(not-treated) cells were compared to thermoradiotherapy-treated cells.

In general, in the HSP70 knockdown cells, fewer genes were significantly differentially expressed (for the 
given log ratio and significance level) than in the negative control siRNA transfected cells in response to the 
three treatment modalities (radiation, hyperthermia, thermoradiotherapy), with thermoradiotherapy result-
ing in the highest amount of the differentially expressed genes in both groups (negative control siRNA and 
HSP70 knockdown cells). However, when we directly compared the radiotherapy-treated cells transfected with 
negative control siRNA to irradiation-treated HSP70 knockdown cells, 945 differentially expressed genes were 
identified (p < 0.01 and log ratio > 0.5; the 500 most significant genes in Supplementary Table 8). Comparison of 
hyperthermia-treated negative control siRNA cells to hyperthermia-treated HSP70 knockdown cells revealed 
1,367 differentially expressed genes (p < 0.01 and log ratio > 0.5; the 500 most significant genes in Supplemen-
tary Table 9). Finally, the comparison between thermoradiotherapy-treated negative control siRNA cells to 
thermoradiotherapy-treated HSP70 knockdown cells resulted in 3,083 differentially expressed genes (p < 0.01 
and log ratio > 0.5; the 500 most significant genes in Supplementary Table 10). Many of these genes are the result 
of the knockdown itself. Combined treatment has the biggest impact on the gene expression in Abrams cells in 
comparison to single treatments, also when we directly compared the HSP70-proficient and -knockdown cells.

Identification of HSP70‑dependent genes regulated by the (thermo)radiotherapy. In order 
to identify genes differentially expressed in response to thermoradiotherapy and dependent on the presence of 
HSP70, the Venn diagrams were created (Fig. 5). In the first comparison, the differentially expressed genes in 
negative control siRNA transfected cells and HSP70 knockdown cells were compared (top 200 most significantly 
expressed genes in hyperthermia versus non-treated and thermoradiotherapy versus non-treated, annotated 
genes). In negative control siRNA cells, 75 genes were common between hyperthermia and thermoradiotherapy 
treated cells (Fig.  5A). In the knockdown cells, 107 genes were common between the two treatment groups 
(Fig.  5B). As a next step, we compared the genes induced by hyperthermia only in negative control siRNA 
cells versus knockdown cells in order to identify genes dependent on the presence of HSP70. This comparison 

Figure 4.  Principal component analysis score plot for all the samples used in the experiment.
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resulted in 24 genes differentially expressed in knockdown cells only (Fig. 5C and Supplementary Table 11). 
Genes involved in cellular processes were the most represented among these 24 genes (11 genes). In thermoradi-
otherapy-treated cells, 66 genes were differentially expressed in knockdown cells only (Fig. 5D and Supplemen-
tary Table 11). Also in this group, genes involved in cellular processes (38) were the most represented, followed 
by metabolic processes (13) and biological regulation (13). In the radiotherapy alone treated group (RT) only few 
genes were significantly induced in negative control siRNA and HSP70 knockdown cells, 25 and 12, respectively 
(Supplementary Tables 2 and 3). Among them (annotated genes), 2 were common between both groups, 16 were 
expressed in negative control siRNA cells only and 9 in knockdown cells only (Supplementary Fig. 4).

Effect of HSP70 knockdown on cell proliferation and clonogenicity. Negative control siRNA and 
HSP70 knockdown cells proliferation was inhibited by the treatment with thermoradiotherapy (Fig. 6A), the 
level of inhibition was significantly lower in negative control siRNA cells in comparison to the siHSP70 cells. 
When clonogenic cell survival of the cells was measured after treatment, both, negative control siRNA and 
knockdown cell clonogenicity was significantly reduced by the thermoradiotherapy treatment in comparison to 
the respective controls (42 °C versus 37 °C at 3 Gy and 6 Gy, Fig. 6B). Interestingly, there was significant differ-
ence between negative control siRNA cells and knockdown cells treated with 6 Gy at 37 °C but not between cells 
pre-treated with hyperthermia (42 °C) and treated with radiotherapy afterwards. Moreover, we have analyzed 
the levels of apoptosis and necrosis in negative control siRNA and HSP70 knockdown Abrams cells 96 h after 
treatment end. We observed small, although not significant increase in induction of apoptosis and necrosis in 
response to radiotherapy and thermoradiotherapy in both negative control siRNA and HSP70 knockdown cells 
(Fig. 6C,D).

Discussion
Hyperthermia prior to radiotherapy is currently used in human and veterinary oncology to treat refractory 
 tumors22,23. The exact mechanism of radiosensitization is in large parts explained by the increased perfusion 
and reoxygenation of the tumors, which leads to increased response to  radiotherapy24. Little is known, however, 
about the molecular mechanism of radiosensitization at the cellular level and the role of heat shock proteins. We 
tried to address it by performing RNA sequencing analysis of canine osteosarcoma cells with high and low levels 
of HSP70 and treated with (thermo)radiotherapy. Interestingly, we found that only few genes were altered by the 

Figure 5.  Hyperthermia and thermoradiotherapy differentially regulates the expression of certain genes in a 
HSP70-dependent manner. Venn diagrams showing the distribution and overlap of top 200 most significantly 
differentially expressed genes between the hyperthermia (HT) and thermoradiotherapy (HTRT) in negative 
control (A) and HSP70 knockdown (B) cells. Distribution and overlap of only hyperthermia-regulated genes (C, 
green circles in sub-figure A and B) and only thermoradiotherapy-regulated genes (D, grey circles in sub-figure 
A and B) between negative control and HSP70 knockdown cells.
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treatment with radiotherapy alone in both, negative control siRNA and siHSP70 osteosarcoma cells. There are 
very few studies that investigate gene expression after irradiation by RNA sequencing: Doan et al., showed that 
there were 1,094 radiation responsive genes in stable radiation-resistant glioblastoma cell line  U8725. However, 
it cannot be directly compared with our study, as we looked at gene expression 24 h after irradiation with 6 Gy 
and in the study mentioned above, stable glioblastoma U87 cell line, generated after irradiation with 10 Gy, was 
 used25. In another study, 399 and 89 genes were significantly up- or down-regulated by irradiation with 2 Gy 
at 6 h time point in radiation-resistant, and -sensitive prostate cancer cell lines,  respectively26. Sarcomas are in 
general radiation-resistant, which could partially explain the low amount of differentially expressed genes in 
Abrams osteosarcoma cell line in response to radiotherapy. Moreover, it has been previously shown, that the 
radiation-induced gene expression is strongly dependent on the individual cell genotype, therefore the compari-
son with other cancer types and cell lines is not  suitable27. In contrast, we observed that both, hyperthermia and 
thermoradiotherapy, induced strong changes in gene expression in HSP70-proficient and -deficient osteosarcoma 
cells. This is in line with another studies, where strong changes in gene expression were observed after heat shock 
in chicken hepatocellular carcinoma, gliomas and ovarian  cancer28–30. Interestingly, Mahat et al., showed that 
gene expression changes in response to heat shock are mostly independent of heat shock factor 1 (HSF1), which 
regulates only fraction of heat-induced  genes31. This could explain why we observed only 24 (out of 200 most 
significant) HSP70-dependent differentially expressed genes in response to hyperthermia in our study. It is also 
important to mention, that since we used only one siRNA in our RNA sequencing study, we cannot exclude off-
target effects of the HSP70 knockdown on gene expression. Further investigations, which would include different 
siRNAs sequences targeting HSP70 could additionally confirm the effects we observed.

Moreover, another human and canine osteosarcoma cell lines could be used to investigate if the effects of ther-
moradiotherapy and HSP70 knockdown we observed are specific for this type of cancer. Interestingly, although 
radiotherapy alone did not induce strong gene expression changes, the combined thermoradiotherapy induced 
stronger changes than hyperthermia alone, suggesting, that pre-treatment with hyperthermia acts on the cel-
lular level to sensitize cells to radiotherapy. Indeed, it has been previously shown that hyperthermia can affect 
DNA repair pathway in cancer  cells32. Functionally, we observed significant changes in proliferation but not in 
clonogenicity between HSP70-proficient and deficient cells in response to thermoradiotherapy. Membrane-bound 
HSP70 has been previously shown to play an important role in the mechanism or  radiosensitization33. Since we 
used HSP70 cells with low total (not only membrane-bound) HSP70 in our study, it could explain why there 
were no differences in clonogenic cell survival in response to thermoradiotherapy between HSP70-proficient and 

Figure 6.  Cell proliferation but not clonogenicity and apoptosis/necrosis is affected by the HSP70 knockdown 
in response to thermoradiotherapy. Cell proliferation measured 96 h after treatment in negative control and 
HSP70 knockdown cells treated with single and combined thermoradiotherapy (A). Clonogenic cell survival of 
negative control and HSP70 knockdown after thermoradiotherapy and radiotherapy treatment (B). Apoptosis 
(C) and necrosis (D) analyzed 96 h after treatment in negative control and HSP70 knockdown cells treated with 
single and combined thermoradiotherapy. Mean of three independent experiments ± SEM is shown.
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-deficient cells. Moreover, another studies showing the role of HSP70 in radiation sensitivity indicate, that these 
effects are mediated by the interaction of the surface HSP70 with immune cells and tumor microenvironment, 
the aspect, which we did not investigate in our  study34,35.

In summary, knockdown of HSP70 induces gene expression changes in response to hyperthermia and ther-
moradiotherapy in canine osteosarcoma cell line. Further studies on the role of HSP70-dependent genes in the 
mechanism of thermoradiosensitization could pave a way into novel, combinatorial treatment options.

Data availability
The datasets generated during and/or analysed during the current study are available in the ArrayExpress reposi-
tory, https ://www.ebi.ac.uk/array expre ss/exper iment s/E-MTAB-8652/.
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