28 research outputs found

    Detection of long repeat expansions from PCR-free whole-genome sequence data

    Get PDF
    Identifying large expansions of short tandem repeats (STRs) such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step towards integrating WGS into precision medicine. We have developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3,001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2,786/2,789, 95% CI [0.997, 1.00]) of the wild type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples where every sample had one of eight different pathogenic repeat expansions including those associated with fragile X syndrome, Friedreich's ataxia and Huntington's disease and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions. The software is licensed under GPL v3.0 and the source code is freely available on GitHub

    The role of compatibility in the diffusion of technologies through social networks

    No full text
    In many settings, competing technologies -- for example, operating systems, instant messenger systems, or document formats -- can be seen adopting a limited amount of compatibility with one another; in other words, the difficulty in using multiple technologies is balanced somewhere between the two extremes of impossibility and effortless interoperability. There are a range of reasons why this phenomenon occurs, many of which -- based on legal, social, or business considerations -- seem to defy concise mathematical models. Despite this, we show that the advantages of limited compatibility can arise in a very simple model of diffusion in social networks, thus offering a basic explanation for this phenomenon in purely strategic terms. Our approach builds on work on the diffusion of innovations in the economics literature, which seeks to model how a new technology A might spread through a social network of individuals who are currently users of technology B. We consider several ways of capturing the compatibility of A and B, focusing primarily on a model in which users can choose to adopt A, adopt B, or -- at an extra cost -- adopt both A and B. We characterize how the ability of A to spread depends on both its quality relative to B, and also this additional cost of adopting both, and find some surprising non-monotonicity properties in the dependence on these parameters: in some cases, for one technology to survive the introduction of another, the cost of adopting both technologies must be balanced within a narrow, intermediate range. We also extend the framework to the case of multiple technologies, where we find that a simple model captures the phenomenon of two firms adopting a limited "strategic alliance" to defend against a new, third technology

    Supplementary Material for: The Prevalence of Huntington's Disease

    No full text
    <b><i>Background:</i></b> Reviews of the epidemiology of Huntington's disease (HD) suggest that its worldwide prevalence varies widely. This review was undertaken to confirm these observations, to assess the extent to which differences in case-ascertainment and/or diagnosis might be responsible, and to investigate whether the prevalence pattern has changed over the past 50 years. <b><i>Methods:</i></b> Eighty two relevant studies were identified from Medline and Embase, previous reviews, scrutiny of references from included and excluded studies and enquiry among those interested in the field. <b><i>Results:</i></b> The lowest rates were among the Asians and the highest among the Caucasians. The differences are not fully explained by varying approaches to case-ascertainment or diagnosis. There was evidence of an increasing prevalence of between 15 and 20% per decade in studies from Australia, North America and Western Europe. <b><i>Conclusions:</i></b> The prevalence of HD varies more than tenfold between different geographical regions. This variation can in part be attributed to differences in case-ascertainment and/or diagnostic criteria, but there is consistent evidence of a lower incidence in Asian populations. There is also evidence that in Australia, North America and in Western Europe (including the United Kingdom), prevalence has increased over the past 50 plus years

    Repeat Instability in the 27-39 CAG Range of the HD Gene in the Venezuelan Kindreds: Counseling Implications

    No full text
    The instability of the CAG repeat size of the HD gene when transmitted intergenerationally has critical implications for genetic counseling practices. In particular, CAG repeats between 27 and 35 have been the subject of debate based on small samples. To address this issue, we analyzed allelic instability in the Venezuelan HD kindreds, the largest and most informative families ascertained for HD. We identified 647 transmissions. Our results indicate that repeats in the 27-35 CAG range are highly stable. Out of 69 transmitted alleles in this range, none expand into any penetrant ranges. Contrastingly, 14% of alleles transmitted from the incompletely penetrant range (36-39 CAGs) expand into the completely penetrant range, characterized by alleles with 40 or more CAG repeats. At least 12 of the 534 transmissions from the completely penetrant range contract into the incompletely penetrant range of 36-39 CAG repeats. In these kindreds, none of the individuals with 27-39 CAGs were symptomatic, even though they ranged in age from 11 to 82 years. We expect these findings to be helpful in updating genetic counseling practices. © 2008 Wiley-Liss, Inc.link_to_subscribed_fulltex

    Regional and cellular gene expression changes in human Huntington's disease brain.

    No full text
    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases
    corecore