619 research outputs found
A new test of conservation laws and Lorentz invariance in relativistic gravity
General relativity predicts that energy and momentum conservation laws hold
and that preferred frames do not exist. The parametrised post-Newtonian
formalism (PPN) phenomenologically quantifies possible deviations from general
relativity. The PPN parameter alpha_3 (which identically vanishes in general
relativity) plays a dual role in that it is associated both with a violation of
the momentum conservation law, and with the existence of a preferred frame. By
considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it
is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous
results by several orders of magnitude, and shows that pulsar tests of alpha_3
rank (together with Hughes-Drever-type tests of local Lorentz invariance) among
the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty,
no figure
Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling
The paper generalizes the structure of gravitational waves from orbiting
spinning binaries under leading order spin-orbit coupling, as given in the work
by K\"onigsd\"orffer and Gopakumar [PRD 71, 024039 (2005)] for single-spin and
equal-mass binaries, to unequal-mass binaries and arbitrary spin
configurations. The orbital motion is taken to be quasi-circular and the
fractional mass difference is assumed to be small against one. The emitted
gravitational waveforms are given in analytic form.Comment: 13 pages, 2 figures, submitted to PRD on 11 Sep. 200
Prospects for probing strong gravity with a pulsar-black hole system
The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected
to provide a superb new probe of relativistic gravity and BH properties. Apart
from a precise mass measurement for the BH, one could expect a clean
verification of the dragging of space-time caused by the BH spin. In order to
measure the quadrupole moment of the BH for testing the no-hair theorem of
general relativity (GR), one has to hope for a sufficiently massive BH. In this
respect, a PSR orbiting the super-massive BH in the center of our Galaxy would
be the ultimate laboratory for gravity tests with PSRs. But even for gravity
theories that predict the same properties for BHs as GR, a PSR-BH system would
constitute an excellent test system, due to the high grade of asymmetry in the
strong field properties of these two components. Here we highlight some of the
potential gravity tests that one could expect from different PSR-BH systems,
utilizing present and future radio telescopes, like FAST and SKA.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and
Opportunities after 80 years", J. van Leeuwen (ed.); 6 pages, 3 figure
Prospects for Probing the Spacetime of Sgr A* with Pulsars
The discovery of radio pulsars in compact orbits around Sgr A* would allow an
unprecedented and detailed investigation of the spacetime of the supermassive
black hole. This paper shows that pulsar timing, including that of a single
pulsar, has the potential to provide novel tests of general relativity, in
particular its cosmic censorship conjecture and no-hair theorem for rotating
black holes. These experiments can be performed by timing observations with 100
micro-second precision, achievable with the Square Kilometre Array for a normal
pulsar at frequency above 15 GHz. Based on the standard pulsar timing
technique, we develop a method that allows the determination of the mass, spin,
and quadrupole moment of Sgr A*, and provides a consistent covariance analysis
of the measurement errors. Furthermore, we test this method in detailed mock
data simulations. It seems likely that only for orbital periods below ~0.3 yr
is there the possibility of having negligible external perturbations. For such
orbits we expect a ~10^-3 test of the frame dragging and a ~10^-2 test of the
no-hair theorem within 5 years, if Sgr A* is spinning rapidly. Our method is
also capable of identifying perturbations caused by distributed mass around Sgr
A*, thus providing high confidence in these gravity tests. Our analysis is not
affected by uncertainties in our knowledge of the distance to the Galactic
center, R0. A combination of pulsar timing with the astrometric results of
stellar orbits would greatly improve the measurement precision of R0.Comment: 12 pages, 10 Figures, accepted for publication in Ap
Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame
The equations of motion of compact binary systems and their associated
Lagrangian formulation have been derived in previous works at the third
post-Newtonian (3PN) approximation of general relativity in harmonic
coordinates. In the present work we investigate the binary's relative dynamics
in the center-of-mass frame (center of mass located at the origin of the
coordinates). We obtain the 3PN-accurate expressions of the center-of-mass
positions and equations of the relative binary motion. We show that the
equations derive from a Lagrangian (neglecting the radiation reaction), from
which we deduce the conserved center-of-mass energy and angular momentum at the
3PN order. The harmonic-coordinates center-of-mass Lagrangian is equivalent,
{\it via} a contact transformation of the particles' variables, to the
center-of-mass Hamiltonian in ADM coordinates that is known from the
post-Newtonian ADM-Hamiltonian formalism. As an application we investigate the
dynamical stability of circular binary orbits at the 3PN order.Comment: 31 pages, to appear in Classical and Quantum Gravit
Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression
<p>Abstract</p> <p>Background</p> <p>Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to <it>H. pylori</it>-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the <it>H. pylori</it>-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both <it>ex vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p>The expression of Progranulin was studied in biopsies of <it>H. pylori</it>-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR.</p> <p>Results</p> <p><it>H. pylori</it>-infected subjects had about 2-fold increased antral Progranulin expression compared to <it>H. pylori</it>-negative and -eradicated subjects (P < 0.05). Overall, no correlations between mucosal Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to <it>H. pylori </it>infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The <it>H. pylori</it>-induced upregulation of Progranulin was verified in AGS cells infected by <it>H. pylori</it>. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by <it>H. pylori</it>.</p> <p>Conclusions</p> <p>Taken together, Progranulin was identified as novel molecule that is upregulated in context to <it>H. pylori </it>infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in <it>H. pylori</it>-mediated gastritis.</p
Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites
Sizes of aerosol particles depend on the relative humidity of their carrier gas. Most monitoring networks require therefore that the aerosol is dried to a relative humidity below 50% r.H. to ensure comparability of measurements at different sites. Commercially available aerosol dryers are often not suitable for this purpose at remote monitoring sites. Adsorption dryers need to be regenerated frequently and maintenance-free single column Nafion dryers are not designed for high aerosol flow rates. We therefore developed an automatic regenerating adsorption aerosol dryer with a design flow rate of 1 m3/h. Particle transmission efficiency of this dryer has been determined during a 3 week experiment. The lower 50% cut-off was found to be smaller than 3 nm at the design flow rate of the instrument. Measured transmission efficiencies are in good agreement with theoretical calculations. One dryer has been successfully deployed in the Amazon river basin. We present data from this monitoring site for the first 6 months of measurements (February 2008–August 2008). Apart from one unscheduled service, this dryer did not require any maintenance during this time period. The average relative humidity of the dried aerosol was 27.1+/−7.5% r.H. compared to an average ambient relative humidity of nearly 80% and temperatures around 30°C. This initial deployment demonstrated that these dryers are well suitable for continuous operation at remote monitoring sites under adverse ambient conditions
Pulsar J1411+2551: A Low Mass New Double Neutron Star System
In this work, we report the discovery and characterization of PSR J1411+2551,
a new binary pulsar discovered in the Arecibo 327 MHz Drift Pulsar Survey. Our
timing observations of the radio pulsar in the system span a period of about
2.5 years. This timing campaign allowed a precise measurement of its spin
period (62.4 ms) and its derivative (9.6 0.7) ; from these, we derive a characteristic age of Gyr and a
surface magnetic field strength of 2.5 G. These numbers
indicate that this pulsar was mildly recycled by accretion of matter from the
progenitor of the companion star. The system has an eccentric ()
2.61 day orbit. This eccentricity allows a highly significant measurement of
the rate of advance of periastron, . Assuming general relativity accurately models the
orbital motion, this implies a total system mass M = . The minimum companion mass is and the maximum
pulsar mass is . The large companion mass and the orbital
eccentricity suggest that PSR J1411+2551 is a double neutron star system; the
lightest known to date including the DNS merger GW 170817. Furthermore, the
relatively low orbital eccentricity and small proper motion limits suggest that
the second supernova had a relatively small associated kick; this and the low
system mass suggest that it was an ultra-stripped supernova.Comment: Accepted for publication in APJ letter
Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array
The discovery and timing of radio pulsars within the Galactic centre is a
fundamental aspect of the SKA Science Case, responding to the topic of "Strong
Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004;
Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for
testing the General theory of Relativity and alternative gravity theories (see
Wex (2014) for a recent review). Timing a pulsar in orbit around a companion,
provides a unique way of probing the relativistic dynamics and spacetime of
such a system. The strictest tests of gravity, in strong field conditions, are
expected to come from a pulsar orbiting a black hole. In this sense, a pulsar
in a close orbit ( < 1 yr) around our nearest supermassive black
hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic
centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of
the orbit and the relativistic effects associated with it, even a slowly
spinning pulsar would allow the black hole spacetime to be explored in great
detail (Liu et al. 2012). For example, measurement of the frame dragging caused
by the rotation of the supermassive black hole, would allow a test of the
"cosmic censorship conjecture." The "no-hair theorem" can be tested by
measuring the quadrupole moment of the black hole. These are two of the prime
examples for the fundamental studies of gravity one could do with a pulsar
around Sagittarius A*. As will be shown here, SKA1-MID and ultimately the SKA
will provide the opportunity to begin to find and time the pulsars in this
extreme environment.Comment: 14 pages, 5 figures, to be published in: "Advancing Astrophysics with
the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04
Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior
Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing
- …