1,499 research outputs found

    THE CAUSES AND CONSEQUENCES OF INDIVIDUAL VARIATION IN PARENTAL CARE BEHAVIOR

    Get PDF
    Behavioral traits can be remarkably flexible depending on the conditions in which they are expressed, yet, in spite of this flexibility, persistent differences between individuals appear to limit the potential expression of behaviors. For example, despite evidence that parents provide variable amounts of parental care in response to changing environmental conditions, they also differ in the overall level of care they provide. I used a behavioral reaction norm approach to study individual variation in parental care behavior in free-living house sparrows (Passer domesticus). I investigated the nature of this variation by studying the relationship between different forms of parental care, the biological basis of individual variation in care, and the effect of this variation in care on offspring. First, I found a positive covariance between nestling provisioning and nest defense. Parents that provided high levels of care in one context provided high levels of care in the other context, even after accounting for measures of offspring value. Second, I sought to identify the biological sources that create and maintain consistent individual differences in the level of care a parent provides. I found that the likelihood of feeding nestlings large food items was positively associated with genetic heterozygosity, but did not find evidence that nestling provisioning was influenced by additive genetic variation in this population. Parents hatched from larger eggs provisioned offspring at a higher rate than parents hatched from smaller eggs, but there was no effect of other conditions experienced in the nest on the level of care expressed as an adult. I also tested if differences in problem-solving ability were related to differences in parental care behavior. Although I found that problem-solving parents fledged more offspring than parents that could not solve the problem, parental care was not associated with any measure of problem-solving ability. Finally, I found that individual variation in parental care reaction norms predicted the growth rate, size, and immune response of nestlings, which in turn positively affected offspring survival and recruitment. My findings reveal factors maintaining individual differences in parental care behavior and offer new insights into the causes and consequences of individual variation

    Endothelial Restoration of Receptor Activity-Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy.

    Get PDF
    RAMPs (receptor activity-modifying proteins) serve as oligomeric modulators for numerous G-protein-coupled receptors, yet elucidating the physiological relevance of these interactions remains complex. Ramp2 null mice are embryonic lethal, with cardiovascular developmental defects similar to those observed in mice null for canonical adrenomedullin/calcitonin receptor-like receptor signaling. We aimed to genetically rescue the Ramp2(-/-) lethality in order to further delineate the spatiotemporal requirements for RAMP2 function during development and thereby enable the elucidation of an expanded repertoire of RAMP2 functions with family B G-protein-coupled receptors in adult homeostasis. Endothelial-specific expression of Ramp2 under the VE-cadherin promoter resulted in the partial rescue of Ramp2(-/-) mice, demonstrating that endothelial expression of Ramp2 is necessary and sufficient for survival. The surviving Ramp2(-/-) Tg animals lived to adulthood and developed spontaneous hypotension and dilated cardiomyopathy, which was not observed in adult mice lacking calcitonin receptor-like receptor. Yet, the hearts of Ramp2(-/-) Tg animals displayed dysregulation of family B G-protein-coupled receptors, including parathyroid hormone and glucagon receptors, as well as their downstream signaling pathways. These data suggest a functional requirement for RAMP2 in the modulation of additional G-protein-coupled receptor pathways in vivo, which is critical for sustained cardiovascular homeostasis. The cardiovascular importance of RAMP2 extends beyond the endothelium and canonical adrenomedullin/calcitonin receptor-like receptor signaling, in which future studies could elucidate novel and pharmacologically tractable pathways for treating cardiovascular diseases

    Quantitative chemical mapping of InGaN quantum wells from calibrated high-angle annular dark field micrographs

    Get PDF
    We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale

    Formation of proto-globular cluster candidates in cosmological simulations of dwarf galaxies at z>4z>4

    Full text link
    We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies (Mvir≈1010 M⊙(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot at z=0z=0) as part of the "Feedback in Realistic Environment" (FIRE) project. Compact (r1/2<30r_{1/2}<30 pc), relatively massive (0.5×105≲M⋆/M⊙≲5×1050.5 \times 10^5 \lesssim M_{\star}/{\rm M}_\odot \lesssim 5\times10^5), self-bound stellar clusters form at 11≳z≳511\gtrsim z \gtrsim 5 in progenitors with Mvir≈109 M⊙M_{\rm vir} \approx 10^9\,{\rm M}_\odot. Cluster formation is triggered when at least 107 M⊙10^7\,{\rm M}_\odot of dense, turbulent gas reaches Σgas≈104 M⊙ pc−2\Sigma_{\rm gas} \approx 10^4\, {\rm M}_\odot\, {\rm pc}^{-2} as a result of the compressive effects of supernova feedback or from cloud-cloud collisions. The clusters can survive for 2−3 Gyr2-3\,{\rm Gyr}; absent numerical effects, they would likely survive substantially longer, perhaps to z=0z=0. The longest-lived clusters are those that form at significant distance -- several hundreds of pc -- from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter halos as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in \textit{Hubble Space Telescope} lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with the \textit{James Webb Space Telescope}. By contrast, the star clusters' host galaxies will remain undetectable.Comment: 14 pages, 5 figures, submitted to MNRA

    Quasar Clustering from SDSS DR5: Dependences on Physical Properties

    Full text link
    Using a homogenous sample of 38,208 quasars with a sky coverage of 4000deg24000 {\rm deg^2} drawn from the SDSS Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness. At z<2.5z<2.5, quasar clustering depends weakly on luminosity and virial black hole mass, with typical uncertainty levels ∼10\sim 10% for the measured correlation lengths. These weak dependences are consistent with models in which substantial scatter between quasar luminosity, virial black hole mass and the host dark matter halo mass has diluted any clustering difference, where halo mass is assumed to be the relevant quantity that best correlates with clustering strength. However, the most luminous and most massive quasars are more strongly clustered (at the ∼2σ\sim 2\sigma level) than the remainder of the sample, which we attribute to the rapid increase of the bias factor at the high-mass end of host halos. We do not observe a strong dependence of clustering strength on quasar colors within our sample. On the other hand, radio-loud quasars are more strongly clustered than are radio-quiet quasars matched in redshift and optical luminosity (or virial black hole mass), consistent with local observations of radio galaxies and radio-loud type 2 AGN. Thus radio-loud quasars reside in more massive and denser environments in the biased halo clustering picture. Using the Sheth et al.(2001) formula for the linear halo bias, the estimated host halo mass for radio-loud quasars is ∼1013h−1M⊙\sim 10^{13} h^{-1}M_\odot, compared to ∼2×1012h−1M⊙\sim 2\times 10^{12} h^{-1}M_\odot for radio-quiet quasar hosts at z∼1.5z\sim 1.5.Comment: Updated version; accepted for publication in Ap

    The clustering of galaxies at z~0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the LCDM cosmology

    Full text link
    We present results on the clustering of 282,068 galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) sample of massive galaxies with redshifts 0.4<z<0.7 which is part of the Sloan Digital Sky Survey III project. Our results cover a large range of scales from ~0.5 to ~90 Mpc/h. We compare these estimates with the expectations of the flat LCDM cosmological model with parameters compatible with WMAP7 data. We use the MultiDark cosmological simulation together with a simple halo abundance matching technique, to estimate galaxy correlation functions, power spectra, abundance of subhaloes and galaxy biases. We find that the LCDM model gives a reasonable description to the observed correlation functions at z~0.5, which is a remarkably good agreement considering that the model, once matched to the observed abundance of BOSS galaxies, does not have any free parameters. However, we find a deviation (>~10%) in the correlation functions for scales less than ~1 Mpc/h and ~10-40 Mpc/h. A more realistic abundance matching model and better statistics from upcoming observations are needed to clarify the situation. We also estimate that about 12% of the "galaxies" in the abundance-matched sample are satellites inhabiting central haloes with mass M>~1e14 M_sun/h. Using the MultiDark simulation we also study the real space halo bias b(r) of the matched catalogue finding that b=2.00+/-0.07 at large scales, consistent with the one obtained using the measured BOSS projected correlation function. Furthermore, the linear large-scale bias depends on the number density n of the abundance-matched sample as b=-0.048-(0.594+/-0.02)*log(n/(h/Mpc)^3). Extrapolating these results to BAO scales we measure a scale-dependent damping of the acoustic signal produced by non-linear evolution that leads to ~2-4% dips at ~3 sigma level for wavenumbers k>~0.1 h/Mpc in the linear large-scale bias.Comment: Replaced to match published version. Typos corrected; 25 pages, 17 figures, 9 tables. To appear in MNRAS. Correlation functions (projected and redshift-space) and correlation matrices of CMASS presented in Appendix B. Correlation and covariance data for the combined CMASS sample can be downloaded from http://www.sdss3.org/science/boss_publications.ph

    Effect of continuous nutrient enrichment on microalgae colonizing hard substrates

    Get PDF
    In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed
    • …
    corecore