11 research outputs found

    Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor mu 2 kinase

    Get PDF
    Endocytic cargo such as the transferrin receptor is incorporated into clathrin-coated pits by associating, via tyrosine-based motifs, with the AP2 complex. Cargo-AP2 interactions occur via the mu2 subunit of AP2, which needs to be phosphorylated for endocytosis to occur. The most likely role for mu2 phosphorylation is in cargo recruitment because mu2 phosphorylation enhances its binding to internalization motifs. Here, we investigate the control of mu2 phosphorylation. We identify clathrin as a specific activator of the mu2 kinase and, in permeabilized cells, we show that ligand sequestration, driven by exogenous clathrin, results in elevated levels of mu2 phosphorylation. Furthermore, we show that AP2 containing phospho-mu2 is mainly associated with assembled clathrin in vivo, and that the level of phospho-mu2 is strongly reduced in a chicken B cell line depleted of clathrin heavy chain. Our results imply a central role for clathrin in the regulation of cargo selection via the modulation of phospho-mu2 levels

    Clathrin Is Spindle-Associated but Not Essential for Mitosis

    Get PDF
    Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells

    Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis

    Get PDF
    BACKGROUND: A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. CONCLUSIONS/SIGNIFICANCE: The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases

    Salbutamol inhibits trypsin-mediated production of CXCL8 by keratinocytes.

    No full text
    Treatment of primary keratinocytes (HEKAp) with trypsin led to the production and release of CXCL8. Production of CXCL8 was exquisitely sensitive to inhibition by co-treatment with the beta(2) agonist sabutamol (IC(50)=1.1 nM). The inhibitory effect of salbutamol was beta receptor-mediated since the effect was prevented by the beta antagonist sotalol. Salbutamol also elevated intracellular levels of cAMP (EC(50)=82 nM) but the relationship to the inhibition of CXCL8 secretion was not clear-cut since much higher concentrations of salbutamol were required to elevate total cellular cAMP than inhibit CXCL8 production. However, the effect of salbutamol is likely to be mediated by elevation of cAMP since forskolin, an adenylyl cyclase activator, mimicked the effects of salbutamol while the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine inhibited the effects of salbutamol. Potentiation of cAMP production by co-treatment with the phosphodiesterase type 4 inhibitor rolipram only marginally enhanced the inhibitory effect of salbutamol on CXCL8 production. Taken together, these data suggest that elevation of cAMP production is required for the inhibitory effect of salbutamol on CXCL8 production by keratinocytes and that low threshold levels of cAMP are sufficient to mediate this effect

    Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells.

    No full text
    PGD2, produced by mast cells, has been detected in high concentrations at sites of allergic inflammation. It can stimulate vascular and other inflammatory responses by interaction with D prostanoid receptor (DP) and chemoattractant receptor-like molecule expressed on Th2 cells (CRTH2) receptors. A significant role for PGD2 in mediating allergic responses has been suggested based on the observation that enhanced eosinophilic lung inflammation and cytokine production is apparent in the allergen-challenged airways of transgenic mice overexpressing human PGD2 synthase, and PGD2 can enhance Th2 cytokine production in vitro from CD3/CD28-costimulated Th2 cells. In the present study, we investigated whether PGD2 has the ability to stimulate Th2 cytokine production in the absence of costimulation. At concentrations found at sites of allergic inflammation, PGD2 preferentially elicited the production of IL-4, IL-5, and IL-13 by human Th2 cells in a dose-dependent manner without affecting the level of the anti-inflammatory cytokine IL-10. Gene transcription peaked within 2 h, and protein release peaked approximately 8 h after stimulation. The effect of PGD2 was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD2 but not by the selective DP agonist BW245C, suggesting that the stimulation is mediated by CRTH2 and not DP. Ramatroban, a dual CRTH2/thromboxane-like prostanoid receptor antagonist, markedly inhibited Th2 cytokine production induced by PGD2, while the selective thromboxane-like prostanoid receptor antagonist SQ29548 was without effect. These data suggest that PGD2 preferentially up-regulates proinflammatory cytokine production in human Th2 cells through a CRTH2-dependent mechanism in the absence of any other costimulation and highlight the potential utility of CRTH2 antagonists in the treatment of allergic diseases

    Light on pits

    No full text

    Temporal evolution of human autoantibody response to cytoplasmic rods and rings structure during anti-HCV therapy with ribavirin and interferon-α

    No full text
    Autoantibodies to inosine monophosphate dehydrogenase-2 (IMPDH2), an enzyme involved in de novo biosynthesis of guanine nucleotides, are observed in a subset of hepatitis C virus (HCV) patients receiving interferon alpha (IFN-alpha) plus ribavirin. Anti-IMPDH2 antibodies display a peculiar cytoplasmic rod/ring (RR) pattern in IIF-HEp-2. We examined the dynamics of anti-RR autoimmune response with respect to immunoglobulin isotypes, titer, avidity, and protein targets in 80 sequential samples from 15 HCV patients (plus 12 randomly selected anti-RR-positive, totalizing 92 samples) collected over an 18-month period, including samples collected before, during, and after IFN-alpha + ribavirin treatment. Immunoprecipitation showed reactivity with the 55 kDa IMPDH2 protein in 12/15 patients (80 %) and 11/15 (73 %) reacted with IMPDH2 in a sandwich ELISA. During treatment, anti-IMPDH2 autoantibodies hit their highest levels after 6-12 months of treatment and decreased post-treatment, while anti-HCV antibodies levels were stable over time. Anti-IMPDH2 IgM levels increased up until the sixth month of treatment and remained stable thereafter, while IgG levels increased steadily up to the twelfth month. Both IgG and IgM decreased during the post-treatment period. IgG avidity increased steadily up to the twelfth month of treatment. in conclusion, this study showed that the temporal kinetics of IFN-alpha + ribavirin-induced humoral autoimmune response to IMPDH2 exhibited a considerably delayed pace of increase in antibody levels and avidity as well as in isotype class switch in comparison with a conventional humoral response to infectious agents. These unique findings uncover intriguing differences between the autoimmune response and the immune response to exogenous agents in humans.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Div Rheumatol, BR-04023062 São Paulo, BrazilUniv Florida, Dept Oral Biol, Gainesville, FL 32610 USAUniv Occupat & Environm Hlth, Sch Hlth Sci, Dept Clin Nursing, Yahata Nishi Ku, Kitakyushu, Fukuoka 8078555, JapanUniv Florida, Dept Med, Div Rheumatol & Clin Immunol, Gainesville, FL 32610 USAUniversidade Federal de São Paulo, Div Gastroenterol, BR-04023062 São Paulo, BrazilFleury Med & Hlth Labs, Div Immunol, BR-04102050 São Paulo, BrazilUniversidade Federal de São Paulo, Div Rheumatol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Div Gastroenterol, BR-04023062 São Paulo, BrazilFAPESP: 2010/50710-6FAPESP: 2011/12448-0CAPES: 9028-11-0CNPq: 305064/2011-8Web of Scienc

    The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases

    No full text
    n/
    corecore