95 research outputs found

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.

    Get PDF
    Background Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).Methods To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.Results Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments.Conclusions AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data

    Get PDF
    Background Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs). Methods To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection. Results Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments. Conclusions AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data

    Get PDF
    BACKGROUND: Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs). METHODS: To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection. RESULTS: Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments. CONCLUSIONS: AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Integrative molecular and functional profiling of ERBB2-amplified breast cancers identifies new genetic dependencies.

    Get PDF
    Overexpression of the receptor tyrosine kinase ERBB2 (also known as HER2) occurs in around 15% of breast cancers and is driven by amplification of the ERBB2 gene. ERBB2 amplification is a marker of poor prognosis, and although anti-ERBB2-targeted therapies have shown significant clinical benefit, de novo and acquired resistance remains an important problem. Genomic profiling has demonstrated that ERBB2+ve breast cancers are distinguished from ER+ve and 'triple-negative' breast cancers by harbouring not only the ERBB2 amplification on 17q12, but also a number of co-amplified genes on 17q12 and amplification events on other chromosomes. Some of these genes may have important roles in influencing clinical outcome, and could represent genetic dependencies in ERBB2+ve cancers and therefore potential therapeutic targets. Here, we describe an integrated genomic, gene expression and functional analysis to determine whether the genes present within amplicons are critical for the survival of ERBB2+ve breast tumour cells. We show that only a fraction of the ERBB2-amplified breast tumour lines are truly addicted to the ERBB2 oncogene at the mRNA level and display a heterogeneous set of additional genetic dependencies. These include an addiction to the transcription factor gene TFAP2C when it is amplified and overexpressed, suggesting that TFAP2C represents a genetic dependency in some ERBB2+ve breast cancer cell

    Copy number architectures define treatment-mediated selection of lethal prostate cancer clones

    Get PDF
    Despite initial responses to hormone treatment, metastatic prostate cancer invariably evolves to a lethal state. To characterize the intra-patient evolutionary relationships of metastases that evade treatment, we perform genome-wide copy number profiling and bespoke approaches targeting the androgen receptor (AR) on 167 metastatic regions from 11 organs harvested post-mortem from 10 men who died from prostate cancer. We identify diverse and patient-unique alterations clustering around the AR in metastases from every patient with evidence of independent acquisition of related genomic changes within an individual and, in some patients, the co-existence of AR-neutral clones. Using the genomic boundaries of pan-autosome copy number changes, we confirm a common clone of origin across metastases and diagnostic biopsies, and identified in individual patients, clusters of metastases occupied by dominant clones with diverged autosomal copy number alterations. These autosome-defined clusters are characterized by cluster-specific AR gene architectures, and in two index cases are topologically more congruent than by chance (p-values 3.07 × 10-8 and 6.4 × 10-4). Integration with anatomical sites suggests patterns of spread and points of genomic divergence. Here, we show that copy number boundaries identify treatment-selected clones with putatively distinct lethal trajectories

    Plasma Androgen Receptor and Serum Chromogranin a in Advanced Prostate Cancer

    Get PDF
    Recently, mixed forms between adenocarcinoma and neuroendocrine prostate cancer (NEPC) have emerged that are characterized by persistent androgen receptor (AR)-signalling and elevated chromogranin A (CgA) levels. The main aim of this study was to analyze castration-resistant prostate cancer (CRPC) patients treated with abiraterone or enzalutamide, assessing progression-free/overall survival (PFS/OS) in association with circulating AR and CgA. AR aberrations were analyzed by droplet digital PCR in pre-treatment plasma samples collected from two biomarker protocols [197 patients from a retrospective study (REC 2192/2013) and 59 from a prospective trial (REC 6798/2015)]. We subdivided patients into three groups according to CgA by receiver-operating characteristic (ROC) curves. In the primary cohort, plasma AR gain and mutations (p.L702H/p.T878A) were detected in 78 (39.6%) and 16 (8.1%) patients, respectively. We observed a significantly worse PFS/OS in patients with higher-CgA than in patients with normal-CgA, especially those with no AR-aberrations. Multivariable analysis showed AR gain, higher-CgA and LDH levels as independent predictors of PFS [hazard ratio (HR) = 2.16, 95% confidence interval (95% CI) 1.50-3.12, p < 0.0001, HR = 1.73, 95% CI 1.06-2.84, p = 0.026, and HR = 2.13, 95% CI 1.45-3.13, p = 0.0001, respectively) and OS (HR = 1.72, 95% CI 1.15-2.57, p = 0.008, HR = 3.63, 95% CI 2.13-6.20, p < 0.0001, and HR = 2.31, 95% CI 1.54-3.48, p < 0.0001, respectively). These data were confirmed in the secondary cohort. Pre-treatment CgA detection could be useful to identify these mixed tumors and would seem to have a prognostic role, especially in AR-normal patients. This association needs further evaluation in larger prospective cohorts

    Accumulation of copy number alterations and clinical progression across advanced prostate cancer.

    Get PDF
    BACKGROUND: Genomic copy number alterations commonly occur in prostate cancer and are one measure of genomic instability. The clinical implication of copy number change in advanced prostate cancer, which defines a wide spectrum of disease from high-risk localised to metastatic, is unknown. METHODS: We performed copy number profiling on 688 tumour regions from 300 patients, who presented with advanced prostate cancer prior to the start of long-term androgen deprivation therapy (ADT), in the control arm of the prospective randomised STAMPEDE trial. Patients were categorised into metastatic states as follows; high-risk non-metastatic with or without local lymph node involvement, or metastatic low/high volume. We followed up patients for a median of 7 years. Univariable and multivariable Cox survival models were fitted to estimate the association between the burden of copy number alteration as a continuous variable and the hazard of death or disease progression. RESULTS: The burden of copy number alterations positively associated with radiologically evident distant metastases at diagnosis (P=0.00006) and showed a non-linear relationship with clinical outcome on univariable and multivariable analysis, characterised by a sharp increase in the relative risk of progression (P=0.003) and death (P=0.045) for each unit increase, stabilising into more modest increases with higher copy number burdens. This association between copy number burden and outcome was similar in each metastatic state. Copy number loss occurred significantly more frequently than gain at the lowest copy number burden quartile (q=4.1 × 10-6). Loss of segments in chromosome 5q21-22 and gains at 8q21-24, respectively including CHD1 and cMYC occurred more frequently in cases with higher copy number alteration (for either region: Kolmogorov-Smirnov distance, 0.5; adjusted P<0.0001). Copy number alterations showed variability across tumour regions in the same prostate. This variance associated with increased risk of distant metastases (Kruskal-Wallis test P=0.037). CONCLUSIONS: Copy number alteration in advanced prostate cancer associates with increased risk of metastases at diagnosis. Accumulation of a limited number of copy number alterations associates with most of the increased risk of disease progression and death. The increased likelihood of involvement of specific segments in high copy number alteration burden cancers may suggest an order underlying the accumulation of copy number changes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00268476 , registered on December 22, 2005. EudraCT  2004-000193-31 , registered on October 4, 2004

    Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    Get PDF
    The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm

    Accumulation of copy number alterations and clinical progression across advanced prostate cancer

    Get PDF
    Background: Genomic copy number alterations commonly occur in prostate cancer and are one measure of genomic instability. The clinical implication of copy number change in advanced prostate cancer, which defines a wide spectrum of disease from high-risk localised to metastatic, is unknown. Methods: We performed copy number profiling on 688 tumour regions from 300 patients, who presented with advanced prostate cancer prior to the start of long-term androgen deprivation therapy (ADT), in the control arm of the prospective randomised STAMPEDE trial. Patients were categorised into metastatic states as follows; high-risk non-metastatic with or without local lymph node involvement, or metastatic low/high volume. We followed up patients for a median of 7 years. Univariable and multivariable Cox survival models were fitted to estimate the association between the burden of copy number alteration as a continuous variable and the hazard of death or disease progression. Results: The burden of copy number alterations positively associated with radiologically evident distant metastases at diagnosis (P=0.00006) and showed a non-linear relationship with clinical outcome on univariable and multivariable analysis, characterised by a sharp increase in the relative risk of progression (P=0.003) and death (P=0.045) for each unit increase, stabilising into more modest increases with higher copy number burdens. This association between copy number burden and outcome was similar in each metastatic state. Copy number loss occurred significantly more frequently than gain at the lowest copy number burden quartile (q=4.1 × 10−6). Loss of segments in chromosome 5q21-22 and gains at 8q21-24, respectively including CHD1 and cMYC occurred more frequently in cases with higher copy number alteration (for either region: Kolmogorov–Smirnov distance, 0.5; adjusted P<0.0001). Copy number alterations showed variability across tumour regions in the same prostate. This variance associated with increased risk of distant metastases (Kruskal-Wallis test P=0.037). Conclusions: Copy number alteration in advanced prostate cancer associates with increased risk of metastases at diagnosis. Accumulation of a limited number of copy number alterations associates with most of the increased risk of disease progression and death. The increased likelihood of involvement of specific segments in high copy number alteration burden cancers may suggest an order underlying the accumulation of copy number changes
    • …
    corecore