10 research outputs found

    Improving the biological interfacing capability of Improving the biological interfacing capability of diketopyrrolopyrrole polymers via p-type doping

    Get PDF
    Polydiketopyrrolopyrrole terthiophene (DPP3T), a high-performing conjugated polymer, holds great potential as active material for bioelectronics. Herein, its surface properties are modulated through p-type doping, thereby enhancing the cell behaviour on top of the doped films

    Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms

    Get PDF
    Self-doping organic semiconductors provide a promising route to avoid instabilities and morphological issues associated with molecular n-type dopants. Structural characterization of a naphthalenetetracarboxylic diimide (NDI) semiconductor covalently bound to an ammonium hydroxide group is presented. The dopant precursor was found to be the product of an unexpected base catalyzed hydrolysis, which was reversible. The reversible hydrolysis had profound consequences on the chemical composition, morphology, and electronic performance of the doped films. In addition, we investigated the degradation mechanism of the quaternary ammonium group and the subsequent doping of NDI. These findings reveal that the products of more than one chemical reaction during processing of films must be considered when utilizing this promising class of water-soluble semiconductors

    Risks of mining to salmonid-bearing watersheds

    Get PDF
    Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.This review is based on an October 2019 workshop held at the University of Montana Flathead Lake Biological Station (more information at https://flbs.umt.edu/ newflbs/research/working-groups/mining-and-watersheds/). We thank E. O’Neill and other participants for valuable contributions. A. Beaudreau, M. LaCroix, P. McGrath, K. Schofield, and L. Brown provided helpful reviews of earlier drafts. Three anonymous reviewers provided thoughtful critiques that greatly improved the manuscript. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Our analysis comes from a western science perspective and hence does not incorporate Indigenous knowledge systems. We acknowledge this gap and highlight that the lands and waters we explore in this review have been stewarded by Indigenous Peoples for millennia and continue to be so. Funding: The workshop was cooperatively funded by the Wilburforce Foundation and The Salmon Science Network funded by the Gordon and Betty Moore Foundation. Author contributions: C.J.S. led the review process, writing, and editing. C.J.S. and E.K.S. co-organized the workshop. E.K.S. and J.W.M. extensively contributed to all aspects of the review conceptualization, writing, and editing. A.R.W., S.A.N., J.L.E., D.M.C., S.L.O., R.L.M., F.R.H., D.C.W., and J.W. significantly contributed to portions of the review conceptualization, writing, and editing. J.C., M.Ca., M.Co., C.A.F., G.K., E.D.L., R.M., V.M., J.K.M., M.V.M., and N.S. provided writing and editing and are listed alphabetically. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.Ye

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia

    Get PDF
    Genetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association remain to be determined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a genetic disorder linked with neurodevelopmental disorders and associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA and leads to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Significantly, the EHMT1-regulated miRNA gene set not only controls NRSF/REST but is enriched for association for Intellectual Disability (ID) and schizophrenia. This reveals a broad molecular interaction between H3K9 demethylation, NSRF/REST regulation and risk for ID and Schizophrenia

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe
    corecore