43 research outputs found

    The parasitic plant genome project: New tools for understanding the biology of <em>Orobanche</em> and <em>Striga</em>.

    No full text
    The Parasitic Plant Genome Project has sequenced transcripts from three parasitic species and a nonparasitic relative in the Orobanchaceae with the goal of understanding genetic changes associated with parasitism. The species studied span the trophic spectrum from free-living nonparasite to obligate holoparasite. Parasitic species used were Triphysaria versicolor, a photosynthetically competent species that opportunistically parasitizes roots of neighboring plants; Striga hermonthica, a hemiparasite that has an obligate need for a host; and Orobanche aegyptiaca, a holoparasite with absolute nutritional dependence on a host. Lindenbergia philippensis represents the closest nonparasite sister group to the parasitic Orobanchaceae and was included for comparative purposes. Tissues for transcriptome sequencing from each plant were gathered to identify expressed genes for key life stages from seed conditioning through anthesis. Two of the species studied, S. hermonthica and O. aegyptiaca, are economically important weeds and the data generated by this project are expected to aid in research and control of these species and their relatives. The sequences generated through this project will provide an abundant resource of molecular markers for understanding population dynamics, as well as provide insight into the biology of parasitism and advance progress toward understanding parasite virulence and host resistance mechanisms. In addition, the sequences provide important information on target sites for herbicide action or other novel control strategies such as trans-specific gene silencing

    Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant

    No full text
    Seed germination of Striga spp. (witchweeds), one of the world’s most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) – which mediates strigolactone signaling – complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed
    corecore