114 research outputs found
Bioelectrical impedance vector analysis, phase-angle assessment and relationship with malnutrition risk in a cohort of frail older hospital patients in the United Kingdom
AbstractObjective Bioelectrical impedance vector analysis (BIVA) and phase angle (PA) have been shown previously to indicate relative nutritional status in patients. The aim of this study was to investigate the application of {BIVA} and {PA} assessments in a cohort of frail older hospital patients and compare these assessments with malnutrition risk screening by {MUST} (Malnutrition Universal Screening Tool), and the MNA-SF® (Mini-Nutritional Assessment-Short Form). Methods Sixty-nine patients (n = 44 men; n = 25 women; age 82.1 ± 7.6 y range 62â-96 y; body mass index 25.8 ± 5.4 kg/m2 range 16.6â-45.1 kg/m2) were recruited from hospital wards specializing in the care of frail older individuals from the United Kingdom. Bioelectrical impedance assessment was performed at 50 khz frequency, \{BIVA\} was performed using raw impedance data, \{PA\} was calculated, and data were compared against reference population groups. Patients were categorized by malnutrition risk by \{MUST\} and MNA-SF. Results \{BIVA\} indicated that the men and women in the study were significantly different from reference population groups (P < 0.0001), with a noticeable reduced capacitive reactance (xC) component. The group mean \{PA\} was 4.6° ± 1.1° (2.4°â-9.2°). The mean \{PA\} for men was 4.7° ± 1.3° (2.4°â-9.2°), and for women it was 4.5° ± 0.7° (2.8â-6.0°). Group \{PA\} correlated with MNA-SF score (P = 0.05). \{MUST\} categorized patients predominantly at low risk for malnutrition (80%); whereas MNA-SF was at risk (46%) and malnourished (45%). Conclusions The significant reduction in xC component and \{PA\} is consistent with other studies and is indicative of a reduced body cell mass and nutritional status with aging and illness. The general trend in MNA-SF scoring was more consistent with these patterns as a group; but requires clarification in larger cohorts. Future studies are necessary with an aim to improve and optimize care of frail older people
Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response
Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma
Reference values for body composition and associations with blood pressure in Kenyan adults aged ≥50 years old
Objectives: To develop age and sex-specific centile reference curves for fat free mass (FFM) and fat mass (FM) adjusted for height in an adult Kenyan population and to investigate the association between FM, FFM and blood pressure (BP). Methods: Measures of body composition from bioimpedance analyses and BP were collected in 1,995 participants aged ≥50y in Nakuru County, Kenya. Reference curves were produced using the LMS method. Multivariable linear regression models were used to test the cross-sectional association between body composition indexes and BP. Results: The age and sex-specific reference curves for body composition (FMI and FFMI) confirm that FFMI is lower in both men and women with increasing age. FMI declines with age in women while among men the decline starts after 70 years. FFM was higher in men (47.4 ± 7.2 kg) than in women (38.8 ± 5.5 kg), while FM was lower in men (17.3 ± 8.1 kg) than in women (24.4 ± 10.2 kg). FMI, FFMI and BMI were all positively associated with systolic and diastolic BP, and after adjusting for body weight, FFMI remained positively associated with systolic BP and the FMI remained positively associated with diastolic BP. There was no evidence to suggest that FMI and FFMI were superior to measurement of BMI alone. Conclusion: These body composition reference curves provide normative data on body composition for older adults in Kenya. Further research should consider the prospective associations with health, including frailty-related outcomes
Evaluation of Bioelectrical Impedance Analysis for Identifying Overweight Individuals at Increased Cardiometabolic Risk:A Cross-Sectional Study
OBJECTIVE: To investigate whether bioelectrical impedance analysis could be used to identify overweight individuals at increased cardiometabolic risk, defined as the presence of metabolic syndrome and/or diabetes.DESIGN AND METHODS: Cross-sectional study of a Scottish population including 1210 women and 788 men. The diagnostic performance of thresholds of percentage body fat measured by bioelectrical impedance analysis to identify people at increased cardiometabolic risk was assessed using receiver-operating characteristic curves. Odds ratios for increased cardiometabolic risk in body mass index categories associated with values above compared to below sex-specific percentage body fat thresholds with optimal diagnostic performance were calculated using multivariable logistic regression analyses. The validity of bioelectrical impedance analysis to measure percentage body fat in this population was tested by examining agreement between bioelectrical impedance analysis and dual-energy X-ray absorptiometry in a subgroup of individuals.RESULTS: Participants were aged 16-91 years and the optimal bioelectrical impedance analysis cut-points for percentage body fat for identifying people at increased cardiometabolic risk were 25.9% for men and 37.1% for women. Stratifying by these percentage body fat cut-points, the prevalence of increased cardiometabolic risk was 48% and 38% above the threshold and 24% and 19% below these thresholds for men and women, respectively. By comparison, stratifying by percentage body fat category had little impact on identifying increased cardiometabolic risk in normal weight and obese individuals. Fully adjusted odds ratios of being at increased cardiometabolic risk among overweight people with percentage body fat ?25.9/37.1% compared with percentage body fat <25.9/37.1% as a reference were 1.93 (95% confidence interval: 1.20-3.10) for men and 1.79 (1.10-2.92) for women.CONCLUSION: Percentage body fat measured using bioelectrical impedance analysis above a sex-specific threshold could be used in overweight people to identify individuals at increased cardiometabolic risk, who could benefit from risk factor management
Installing oncofertility programs for common cancers in optimum resource settings (Repro-Can-OPEN Study Part II): a committee opinion
The main objective of Repro-Can-OPEN Study Part 2 is to learn more about oncofertility practices in optimum resource settings to provide a roadmap to establish oncofertility best practice models. As an extrapolation for oncofertility best practice models in optimum resource settings, we surveyed 25 leading and well-resourced oncofertility centers and institutions from the USA, Europe, Australia, and Japan. The survey included questions on the availability and degree of utilization of fertility preservation options in case of childhood cancer, breast cancer, and blood cancer. All surveyed centers responded to all questions. Responses and their calculated oncofertility scores showed three major characteristics of oncofertility practice in optimum resource settings: (1) strong utilization of sperm freezing, egg freezing, embryo freezing, ovarian tissue freezing, gonadal shielding, and fractionation of chemo- and radiotherapy; (2) promising utilization of GnRH analogs, oophoropexy, testicular tissue freezing, and oocyte in vitro maturation (IVM); and (3) rare utilization of neoadjuvant cytoprotective pharmacotherapy, artificial ovary, in vitro spermatogenesis, and stem cell reproductive technology as they are still in preclinical or early clinical research settings. Proper technical and ethical concerns should be considered when offering advanced and experimental oncofertility options to patients. Our Repro-Can-OPEN Study Part 2 proposed installing specific oncofertility programs for common cancers in optimum resource settings as an extrapolation for best practice models. This will provide efficient oncofertility edification and modeling to oncofertility teams and related healthcare providers around the globe and help them offer the best care possible to their patients
Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells
<p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p
A View from the Past Into our Collective Future: The Oncofertility Consortium Vision Statement
Today, male and female adult and pediatric cancer patients, individuals transitioning between gender identities, and other individuals facing health extending but fertility limiting treatments can look forward to a fertile future. This is, in part, due to the work of members associated with the Oncofertility Consortium. The Oncofertility Consortium is an international, interdisciplinary initiative originally designed to explore the urgent unmet need associated with the reproductive future of cancer survivors. As the strategies for fertility management were invented, developed or applied, the individuals for who the program offered hope, similarly expanded. As a community of practice, Consortium participants share information in an open and rapid manner to addresses the complex health care and quality-of-life issues of cancer, transgender and other patients. To ensure that the organization remains contemporary to the needs of the community, the field designed a fully inclusive mechanism for strategic planning and here present the findings of this process. This interprofessional network of medical specialists, scientists, and scholars in the law, medical ethics, religious studies and other disciplines associated with human interventions, explore the relationships between health, disease, survivorship, treatment, gender and reproductive longevity. The goals are to continually integrate the best science in the service of the needs of patients and build a community of care that is ready for the challenges of the field in the future
- …