613 research outputs found

    Spring sown oats for hay - Variety trials Denmark Research Station.

    Get PDF
    The practice of ploughing paddocks in late winter or early spring and the sowing of oats in August and September to cut for hay in November has many advantages in the higher rainfall areas in the south of the State. Trials conducted at the Denmark Research Station from 1954 onward indicate that Fulghum, Kent and Avon oats are the most suitable varieties for spring planting in that distric

    Ectopic c-kit Expression Affects the Fate of Melanocyte Precursors inPatchMutant Embryos

    Get PDF
    AbstractThePatch(Ph) mutation in the mouse, a deletion that includes the gene for PDGFRα, is a recessive lethal that exhibits a dominant pigment phenotype in heterozygotes. To assess whether thePhmutation acts cell-autonomously or non-autonomously on melanocyte development, we have examined the melanogenic potential of neural crest populations from normal and mutant crest cellsin vitroand the pattern of dispersal and survival of melanocyte precursors (MPs)in vivo.We report that trunk neural crest cells from homozygousPhembryos give rise to pigmented melanocytesin vitroin response to Steel factor (SlF).In vivo,homozygousPhembryos contain a subpopulation of crest-derived cells that express c-kit and tyrosinase-related protein-2 characteristic of MPs. These cells begin to migrate normally on the lateral crest migration pathway, but then fail to disperse in the dermal mesenchyme and subsequently disappear. Although dermal mesenchyme is adversely affected inPhhomozygotes, SlF mRNA expression by the cells of the dermatome is normal inPhembryos when neural crest-derived MPs start to migrate on the lateral pathway. In contrast, mRNA for the SlF receptor, c-kit, was observed to be ectopically expressed in somites and lateral mesenchyme in embryos carrying thePhmutation. Based on this ectopic expression of c-kit inPhmutant embryos, and the observed distribution of SlF protein in normal and mutant embryos, we suggest that competition for limited amounts of SlF localized on the lateral neural crest migration pathway alters melanocyte dispersal and survival

    Laser Guide Star for Large Segmented-Aperture Space Telescopes, Part I: Implications for Terrestrial Exoplanet Detection and Observatory Stability

    Full text link
    Precision wavefront control on future segmented-aperture space telescopes presents significant challenges, particularly in the context of high-contrast exoplanet direct imaging. We present a new wavefront control architecture that translates the ground-based artificial guide star concept to space with a laser source aboard a second spacecraft, formation flying within the telescope field-of-view. We describe the motivating problem of mirror segment motion and develop wavefront sensing requirements as a function of guide star magnitude and segment motion power spectrum. Several sample cases with different values for transmitter power, pointing jitter, and wavelength are presented to illustrate the advantages and challenges of having a non-stellar-magnitude noise limited wavefront sensor for space telescopes. These notional designs allow increased control authority, potentially relaxing spacecraft stability requirements by two orders of magnitude, and increasing terrestrial exoplanet discovery space by allowing high-contrast observations of stars of arbitrary brightness.Comment: Submitted to A

    Electrostatic potential on human leukocyte antigen: implications for putative mechanism of chronic beryllium disease.

    Get PDF
    The pathobiology of chronic beryllium disease (CBD) involves the major histocompatibility complex class II human leukocyte antigen (HLA). Although occupational exposure to beryllium is the cause of CBD, molecular epidemiologic studies suggest that specific (Italic)HLA-DPB1(/Italic) alleles may be genetic susceptibility factors. We have studied three-dimensional structural models of HLA-DP proteins encoded by these genes. The extracellular domains of HLA-DPA1*0103/B1*1701, *1901, *0201, and *0401, and HLA-DPA1*0201/B1*1701, *1901, *0201, and *0401 were modeled from the X-ray coordinates of an HLA-DR template. Using these models, the electrostatic potential at the molecular surface of each HLA-DP was calculated and compared. These comparisons identify specific characteristics in the vicinity of the antigen-binding pocket that distinguish the different HLA-DP allotypes. Differences in electrostatics originate from the shape, specific disposition, and variation in the negatively charged groups around the pocket. The more negative the pocket potential, the greater the odds of developing CBD estimated from reported epidemiologic studies. Adverse impact is caused by charged substitutions in positions 55, 56, 69, 84, and 85, namely, the exact same loci identified as genetic markers of CBD susceptibility as well as cobalt-lung hard metal disease. These findings suggest that certain substitutions may promote an involuntary cation-binding site within a putatively metal-free peptide-binding pocket and therefore change the innate specificity of antigen recognition

    Enhanced hydrogen storage in Ni/Ce composite oxides

    Get PDF
    The properties of dried (but not calcined) coprecipitated nickel ceria systems have been investigated in terms of their hydrogen emission characteristics following activation in hydrogen. XRD and BET data obtained on the powders show similarities to calcined ceria but it is likely that the majority of the material produced by the coprecipitation process is largely of an amorphous nature. XPS data indicate very little nickel is present on the outermost surface of the particles. Nevertheless, the thermal analytical techniques (TGA, DSC and TPD-MS) indicate that the hydrogen has access to the catalyst present and the nickel is able to generate hydrogen species capable of interacting with the support. Both unactivated and activated materials show two hydrogen emission features, viz. low temperature and high temperature emissions (LTE and HTE, respectively) over the temperature range 50 and 500 °C. A clear effect of hydrogen interaction with the material is that the activated sample not only emits much more hydrogen than the corresponding unactivated one but also at lower temperatures. H2 dissociation occurs on the reduced catalyst surface and the spillover mechanism transfers this active hydrogen into the ceria, possibly via the formation and migration of OH− species. The amount of hydrogen obtained (0.24 wt%) is 10× higher than those observed for calcined materials and would suggest that the amorphous phase plays a critical role in this process. The affiliated emissions of CO and CO2 with that of the HTE hydrogen (and consumption of water) strongly suggests a proportion of the hydrogen emission at this point arises from the water gas shift type reaction. It has not been possible from the present data to delineate between the various hydrogen storage mechanisms reported for ceria

    Volcano dome dynamics at Mount St. Helens:Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Get PDF
    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity-and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals

    Morphology and Magnetic Properties of Sulfonated Poly[styrene-(ethylene/butylene)-styrene]/Iron Oxide Composites

    Get PDF
    α-Fe2O3 structures were initiated in the sulfonated polystyrene block domains of poly[styrene–(ethylene/butylene)–styrene] (SEBS) block copolymers via a domain-targeted in-situ chemical precipitation method. The crystal structure of these particles was determined using wide-angle X-ray diffraction and selected area electron diffraction using a transmission electron microscope (TEM). TEM revealed that for less sulfonated SEBS (10 mole%), nanoparticles were aggregated with aggregate size range of 100–150 nm whereas for high sulfonation (16 and 20 mole% sSEBS) there were needle-like structures with length and width of 200–250 nm and 50 nm, respectively. Dynamic mechanical analyses suggest that initial iron oxide nanoparticle growth takes place in the sulfonated polystyrene block domains. The magnetic properties of these nanocomposites were probed with a superconducting quantum interference device magnetometer at 5 and 150 K as well as with an alternating gradient magnetometer at 300 K. The materials exhibited superparamagnetism at 150 K and 300 K and ferrimagnetism at 5 K
    corecore