11 research outputs found

    Time at surgery during menstrual cycle and menopause affects pS2 but not cathepsin D levels in breast cancer

    Get PDF
    Many studies have addressed the clinical value of pS2 as a marker of hormone responsiveness and of cathepsin D (Cath D) as a prognostic factor in breast cancer. Because pS2 and Cath D are both oestrogen induced in human breast cancer cell lines, we studied the influence of the menstrual cycle phase and menopausal status at the time of surgery on the levels of these proteins in breast cancer. A population of 1750 patients with breast cancer, including 339 women in menstrual cycle, was analysed. Tumoral Cath D and pS2 were measured by radioimmunoassay. Serum oestradiol (E2), progesterone (Pg), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels at the day of surgery were used to define the hormonal phase in premenopausal women. There was a trend towards a higher mean pS2 level in the follicular phase compared with the luteal phase (17 ng mg−1and 11 ng mg−1respectively, P= 0.09). Mean pS2 was lower in menopausal patients than in women with cycle (8 ng mg−1and 14 ng mg−1respectively, P= 0.0001). No differences in mean Cath D level were observed between the different phases of the menstrual cycle, or between pre- and post-menopausal women. In the overall population, pS2 was slightly positively associated with E2 and Pg levels and negatively associated with FSH and LH, probably reflecting the link between pS2 and menopausal status. In premenopausal women, no association was found between pS2 and E2, Pg, FSH or LH levels. There were no correlations between Cath D level and circulating hormone levels in the overall population. However, in the subgroup of premenopausal women with ER-positive (ER+) tumours, E2 was slightly associated with both pS2 and Cath D, consistent with oestrogen induction of these proteins in ER+ breast cancer cell lines. There are changes in pS2 level in breast cancer throughout the menstrual cycle and menopause. This suggests that the choice of the pS2 cut-off level should take the hormonal status at the time of surgery into account. In contrast, the level of Cath D is unrelated to the menstrual cycle and menopausal status. 1999 Cancer Research Campaig

    Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome

    Get PDF
    We performed a multi-centre randomized controlled trial to compare the efficacy of mycophenolate mofetil (MMF) to that of cyclosporine A (CsA) in treating children with frequently relapsing nephrotic syndrome and biopsy-proven minimal change disease. Of the 31 randomized initially selected patients, seven were excluded. The remaining 24 children received either MMF 1200 mg/m2per day (n = 12) or CsA 4-5 mg/kg per day (n = 12) during a 12-month period. Of the 12 patients in the MMF group, two discontinued the study medication. Evaluation of the changes from the baseline glomerular filtration rate showed an overall significant difference in favour of MMF over the treatment period (p = 0.03). Seven of the 12 patients in the MMF group and 11 of the 12 patients in the CsA group remained in complete remission during the entire study period. Relapse rate in the MMF group was 0.83/year compared to 0.08/year in the CsA group (p = 0.08). None of the patients reported diarrhea. Pharmacokinetic profiles of mycophenolic acid were performed in seven patients. The patient with the lowest area under the curve had three relapses within 6 months. In children with frequently relapsing minimal change nephrotic syndrome, MMF has a favourable side effect profile compared to CsA; however, there is a tendency towards a higher relapse risk in patients treated with MMF

    The Putative Thiosulfate Sulfurtransferases PspE and GlpE Contribute to Virulence of Salmonella Typhimurium in the Mouse Model of Systemic Disease

    Get PDF
    The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes contribute to S. Typhimurium virulence, as a glpE and pspE double deletion strain showed significantly decreased virulence in a mouse model of systemic infection. However, challenge of cultured epithelial cells and macrophages did not reveal any virulence-associated phenotypes. We hypothesized that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H(2)O(2). Since the double mutant, which was the one affected in virulence, was not affected in this assay, we concluded that resistance to oxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxid stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise mechanism by which they contribute to virulence remains elusive

    How accurate and precise are limited sampling strategies in estimating exposure to mycophenolic acid in people with autoimmune disease?

    No full text
    Mycophenolic acid (MPA) is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. Dosing to achieve a specific target MPA area under the concentration-time curve from 0 to 12 h post-dose (AUC(12)) is likely to lead to better treatment outcomes in patients with autoimmune disease than a standard fixed-dose strategy. This review summarizes the available published data around concentration monitoring strategies for MPA in patients with autoimmune disease and examines the accuracy and precision of methods reported to date using limited concentration-time points to estimate MPA AUC(12). A total of 13 studies were identified that assessed the correlation between single time points and MPA AUC(12) and/or examined the predictive performance of limited sampling strategies in estimating MPA AUC(12). The majority of studies investigated mycophenolate mofetil (MMF) rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation of MPA. Correlations between MPA trough concentrations and MPA AUC(12) estimated by full concentration-time profiling ranged from 0.13 to 0.94 across ten studies, with the highest associations (r (2) = 0.90-0.94) observed in lupus nephritis patients. Correlations were generally higher in autoimmune disease patients compared with renal allograft recipients and higher after MMF compared with EC-MPS intake. Four studies investigated use of a limited sampling strategy to predict MPA AUC(12) determined by full concentration-time profiling. Three studies used a limited sampling strategy consisting of a maximum combination of three sampling time points with the latest sample drawn 3-6 h after MMF intake, whereas the remaining study tested all combinations of sampling times. MPA AUC(12) was best predicted when three samples were taken at pre-dose and at 1 and 3 h post-dose with a mean bias and imprecision of 0.8 and 22.6 % for multiple linear regression analysis and of -5.5 and 23.0 % for maximum a posteriori (MAP) Bayesian analysis. Although mean bias was less when data were analysed using multiple linear regression, MAP Bayesian analysis is preferable because of its flexibility with respect to sample timing. Estimation of MPA AUC(12) following EC-MPS administration using a limited sampling strategy with samples drawn within 3 h post-dose resulted in biased and imprecise results, likely due to a longer time to reach a peak MPA concentration (t (max)) with this formulation and more variable pharmacokinetic profiles. Inclusion of later sampling time points that capture enterohepatic recirculation and t (max) improved the predictive performance of strategies to predict EC-MPS exposure. Given the considerable pharmacokinetic variability associated with mycophenolate therapy, limited sampling strategies may potentially help in individualizing patient dosing. However, a compromise needs to be made between the predictive performance of the strategy and its clinical feasibility. An opportunity exists to combine research efforts globally to create an open-source database for MPA (AUC, concentrations and outcomes) that can be used and prospectively evaluated for AUC target-controlled dosing of MPA in autoimmune diseases
    corecore