34 research outputs found

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Habilidades e avaliação de executivos

    Full text link

    Functional diversification enabled grassy biomes to fill global climate space

    No full text
    Global change impacts on the Earth System are typically evaluated using biome classifications based on trees and forests. However, during the Cenozoic, many terrestrial biomes were transformed through the displacement of trees and shrubs by grasses. While grasses comprise 3% of vascular plant species, they are responsible for more than 25% of terrestrial photosynthesis. Critically, grass dominance alters ecosystem dynamics and function by introducing new ecological processes, especially surface fires and grazing. However, the large grassy component of many global biomes is often neglected in their descriptions, thereby ignoring these important ecosystem processes. Furthermore, the functional diversity of grasses in vegetation models is usually reduced to C3 and C4 photosynthetic plant functional types, omitting other relevant traits. Here, we compile available data to determine the global distribution of grassy vegetation and key traits related to grass dominance. Grassy biomes (where > 50% of the ground layer is covered by grasses) occupy almost every part of Earth’s vegetated climate space, characterising over 40% of the land surface. Major evolutionary lineages of grasses have specialised in different environments, but species from only three grass lineages occupy 88% of the land area of grassy vegetation, segregating along gradients of temperature, rainfall and fire. The environment occupied by each lineage is associated with unique plant trait combinations, including C3 and C4 photosynthesis, maximum plant height, and adaptations to fire and aridity. There is no single global climatic limit where C4 grasses replace C3 grasses. Instead this ecological transition varies biogeographically, with continental disjunctions arising through contrasting evolutionary histories
    corecore