107 research outputs found

    Genomics and adaptation in forest ecosystems

    Get PDF
    Rapid human-induced environmental changes like climate warming represent a challenge for forest ecosystems. Due to their biological complexity and the long generation time of their keystone tree species, genetic adaptation in these ecosystems might not be fast enough to keep track with conditions changing at such a fast pace. The study of adaptation to environmental change and its genetic mechanisms is therefore key for ensuring a sustainable support and management of forests. The 4-day conference of the European Research Group EvolTree (https://www.evoltree.eu) on the topic of "Genomics and Adaptation in Forest Ecosystems" brought together over 130 scientists to present and discuss the latest developments and findings in forest evolutionary research. Genomic studies in forest trees have long been hampered by the lack of high-quality genomics resources and affordable genotyping methods. This has dramatically changed in the last few years; the conference impressively showed how such tools are now being applied to study past demography, adaptation and interactions with associated organisms. Moreover, genomic studies are now finally also entering the world of conservation and forest management, for example by measuring the value or cost of interspecific hybridization and introgression, assessing the vulnerability of species and populations to future change, or accurately delineating evolutionary significant units. The newly launched conference series of EvolTree will hopefully play a key role in the exchange and synthesis of such important investigations.Peer reviewe

    Marginality indices for biodiversity conservation in forest trees

    Get PDF
    Marginal and peripheral populations are important for biodiversity conservation. Their original situation in a species’ geographic and ecological space often confers them genetic diversity and traits of high adaptive value. Yet theoretical hypotheses related to marginality are difficult to test because of confounding factors that influence marginality, namely environment, geography, and history. There is an urgent need to develop metrics to disentangle these confounding factors. We designed nine quantitative indices of marginality and peripherality that define where margins lie within species distributions, from a geographical, an environmental and a historical perspective. Using the distribution maps of eight European forest tree species, we assessed whether these indices were idiosyncratic or whether they conveyed redundant information. Using a database on marginal and peripheral populations based on expert knowledge, we assessed the capacity of the indices to predict the marginality status of a population. There was no consistent pattern of correlation between indices across species, confirming that the indices conveyed different information related to the specific geometry of the species distributions. Contrasting with this heterogeneity of correlation patterns across species, the relative importance of the indices to predict the marginality status of populations was consistent across species. However, there was still a significant country effect in the marginality status, showing a variation in expert opinion of marginality vis-á-vis the species distribution. The marginality indices that we developed are entirely based on distribution maps and can be used for any species. They pave the way for testing hypotheses related to marginality and peripherality, with important implications in quantitative ecology, genetics, and biodiversity conservation.Publishe
    corecore