269 research outputs found

    Impaired light detection of the circadian clock in a zebrafish melanoma model

    Get PDF
    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development

    The vertebrate taxonomy ontology: a framework for reasoning across model organism and species phenotypes

    Get PDF
    Background: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. Description: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. Conclusions: The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/ webcite), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution. Keywords: Data integration; Evolutionary biology; Paleontology; Taxonomic ran

    The Zebrafish Information Network: the zebrafish model organism database

    Get PDF
    The Zebrafish Information Network (ZFIN; ) is a web based community resource that implements the curation of zebrafish genetic, genomic and developmental data. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community resources such as meeting announcements and contact information. Recent enhancements to ZFIN include (i) comprehensive curation of gene expression data from the literature and from directly submitted data, (ii) increased support and annotation of the genome sequence, (iii) expanded use of ontologies to support curation and query forms, (iv) curation of morpholino data from the literature, and (v) increased versatility of gene pages, with new data types, links and analysis tools

    The transmembrane inner ear (tmie) gene contributes to vestibular and lateral line development and function in the zebrafish ( Danio rerio )

    Full text link
    The inner ear is a complex organ containing sensory tissue, including hair cells, the development of which is not well understood. Our long-term goal is to discover genes critical for the correct formation and function of the inner ear and its sensory tissue. A novel gene, transmembrane inner ear ( Tmie ), was found to cause hearing-related disorders when defective in mice and humans. A homologous tmie gene in zebrafish was cloned and its expression characterized between 24 and 51 hours post-fertilization. Embryos injected with morpholinos (MO) directed against tmie exhibited circling swimming behavior (∼37%), phenocopying mice with Tmie mutations; semicircular canal formation was disrupted, hair cell numbers were reduced, and maturation of electrically active lateral line neuromasts was delayed. As in the mouse, tmie appears to be required for inner ear development and function in the zebrafish and for hair cell maturation in the vestibular and lateral line systems as well. Developmental Dynamics 237:941–952, 2008. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58082/1/21486_ftp.pd

    Developmental and tissue-specific expression of NITRs

    Get PDF
    Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family

    Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway

    Get PDF
    Neutrophil apoptosis and subsequent nonphlogistic clearance by surrounding phagocytes are key to the successful resolution of neutrophilic inflammation, with dysregulated apoptosis reported in multiple human inflammatory diseases. Enhancing neutrophil apoptosis has proresolution and anti-inflammatory effects in preclinical models of inflammation. Here we investigate the ability of the flavones apigenin, luteolin, and wogonin to induce neutrophil apoptosis in vitro and resolve neutrophilic inflammation in vivo. Human neutrophil apoptosis was assessed morphologically and by flow cytometry following incubation with apigenin, luteolin, and wogonin. All three flavones induced time- and concentration-dependent neutrophil apoptosis (apigenin, EC(50)=12.2 μM; luteolin, EC(50)=14.6 μM; and wogonin, EC(50)=28.9 μM). Induction of apoptosis was caspase dependent, as it was blocked by the broad-spectrum caspase inhibitor Q-VD-OPh and was associated with both caspase-3 and caspase-9 activation. Flavone-induced apoptosis was preceded by down-regulation of the prosurvival protein Mcl-1, with proteasomal inhibition preventing flavone-induced Mcl-1 down-regulation and apoptosis. The flavones abrogated the survival effects of mediators that prolong neutrophil life span, including lipoteichoic acid, peptidoglycan, dexamethasone, and granulocyte-macrophage colony stimulating factor, by driving apoptosis. Furthermore, wogonin enhanced resolution of established neutrophilic inflammation in a zebrafish model of sterile tissue injury. Wogonin-induced resolution was dependent on apoptosis in vivo as it was blocked by caspase inhibition. Our data show that the flavones induce neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.—Lucas, C. D., Allen, K. C., Dorward, D. A., Hoodless, L. J., Melrose, L. A., Marwick, J. A., Tucker, C. S., Haslett, C., Duffin, R., Rossi, A. G. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway

    Evaluation of Pyridoacridine Alkaloids in a Zebrafish Phenotypic Assay

    Get PDF
    Three new minor components, the pyridoacridine alkaloids 1-hydroxy-deoxyamphimedine (1), 3-hydroxy-deoxyamphimedine (2), debromopetrosamine (3), and three known compounds, amphimedine (4), neoamphimedine (5) and deoxyamphimedine (6), have been isolated from the sponge Xestospongia cf. carbonaria, collected in Palau. Structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Compounds 1–6 were evaluated in a zebrafish phenotype-based assay. Amphimedine (4) was the only compound that caused a phenotype in zebrafish embryos at 30 μM. No phenotype other than death was observed for compounds 1–3, 5, 6

    Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development

    Get PDF
    Background: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance: Our work demonstrates that sept9 plays an important role in zebrafish development, an

    Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway

    Get PDF
    Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.Spanish Economy and Competitiveness Ministry Project [ALG2011-23581, AGL2014-52473R]; Portuguese Foundation for Science and Technology [PTDC/BIA-ANM/4225/2012-phos-fate]; U. S. National Institutes of Health/Office of the Director Grant [R01OD011116, R01 RR020833]; Generalitat de Catalunya [SGR2014-290]; Spanish Economy and Competitiveness Ministry [BFU2010-14875]; Science and Innovation Ministry [AGL2010-22247-C03-01]; Campus do Mar Ph.D. grant; Xunta de Galicia (Santiago, Spain) [AGL2014-52473R]info:eu-repo/semantics/publishedVersio
    corecore