131 research outputs found

    Surgical Treatment of Carotid Body Paragangliomas: Outcomes and Complications According to the Shamblin Classification

    Get PDF
    OBJECTIVES: The objective of this study was to review our experience in the surgical management of carotid body paragangliomas and evaluate the outcomes and complications according to the Shamblin classification. METHODS: Thirteen patients who had been diagnosed and surgically treated for carotid body tumors (CBTs) were enrolled in this study. We reviewed patient demographics, radiographic findings, and surgical outcomes collected from medical records. RESULTS: Fifteen CBTs were found in 13 patients and 13 tumors were resected. Selective preoperative tumor embolization was performed on six patients. The median blood loss, operation time, and hospital stay for these patients were not significantly reduced compared to those without embolization. The median tumor size was 2.3 cm in Shamblin I and II and 4 cm in Shamblin III. The median intraoperative blood loss was 280 mL and 700 mL, respectively (P<0.05). Internal carotid artery ligation with reconstruction was accomplished on three patients (23%), and they all belonged to Shamblin III (38%). One Shamblin III patient (8%) developed transient cerebral ischemia, and postoperative stroke with death occurred in another Shamblin III patient. Postoperative permanent cranial nerve deficit occurred in three patients (23%) who were all in Shamblin III (P=0.03). There were no recurrences or delayed complications at the median follow up of 29 months. CONCLUSION: Shamblin III had a high risk of postoperative neurovascular complications. Therefore, early detection and prompt surgical resection of CBTs will decrease surgical morbidity.ope

    Hawai‘i Forest Review: Synthesizing the Ecology, Evolution, and Conservation of a Model System

    Get PDF
    As the most remote archipelago in the world, the Hawaiian Islands are home to a highly endemic and disharmonic biota that has fascinated biologists for centuries. Forests are the dominant terrestrial biome in Hawai‘i, spanning complex, heterogeneous climates across substrates that vary tremendously in age, soil structure, and nutrient availability. Species richness is low in Hawaiian forests compared to other tropical forests, as a consequence of dispersal limitation from continents and adaptive radiations in only some lineages, and forests are dominated by the widespread Metrosideros species complex. Low species richness provides a relatively tractable model system for studies of community assembly, local adaptation, and species interactions. Moreover, Hawaiian forests provide insights into predicted patterns of evolution on islands, revealing that while some evidence supports “island syndromes,” there are exceptions to them all. For example, Hawaiian plants are not as a whole less defended against herbivores, less dispersible, more conservative in resource use, or more slow-growing than their continental relatives. Clearly, more work is needed to understand the drivers, sources, and constraints on phenotypic variation among Hawaiian species, including both widespread and rare species, and to understand the role of this variation for ecological and evolutionary processes, which will further contribute to conservation of this unique biota. Today, Hawaiian forests are among the most threatened globally. Resource management failures – the proliferation of non-native species in particular – have led to devastating declines in native taxa and resulted in dominance by novel species assemblages. Conservation and restoration of Hawaiian forests now rely on managing threats including climate change, ongoing species introductions, novel pathogens, lost mutualists, and altered ecosystem dynamics through the use of diverse tools and strategies grounded in basic ecological, evolutionary, and biocultural principles. The future of Hawaiian forests thus depends on the synthesis of ecological and evolutionary research, which will continue to inform future conservation and restoration practices

    Temporal Network Based Analysis of Cell Specific Vein Graft Transcriptome Defines Key Pathways and Hub Genes in Implantation Injury

    Get PDF
    Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC) and medial smooth muscle cells (SMC) from canine vein grafts, 2 hours (H) to 30 days (D) following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12–24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-ÎșB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1) signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR) as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1), a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention

    Maximum photosynthetic capacity

    No full text
    Contains measured rates of photosynthesis (leaf area based) for a subset of individuals in the experiment. The estimates of stomatal conductance are included but were not used because they were not taken at stomatal equilibrium
    • 

    corecore