873 research outputs found

    Missional Metamorphosis: How Identity, Presence, and Praxis Are Reshaping Disciple Making within Post-Christian Contexts

    Get PDF
    The American Church’s current disciple-making paradigm is struggling to engage post-Christian contexts with the gospel of Jesus Christ. Despite American society’s steady trending away from a biblical worldview, dwindling church attendance, and declining religious affiliation, the American Church is still operating under a disciple-making paradigm conducive for the Christendom era. What changes must occur to help churches break away from an antiquated paradigm and embrace a more contextually appropriate expression? This project helps to answer that question by capturing and expressing how changes in ecclesial identity, contextual presence, and corporate praxis are altering disciple-making paradigms within post-Christian contexts. Utilizing quantitative data derived from local churches within the Florida Baptist Association and qualitative data from leading practitioners within the field of the missional church movement, this project offers a way forward and suggests the changes necessary for transitioning toward a new disciple-making paradigm within post-Christian contexts

    Discerning the neutrino mass ordering using atmospheric neutrinos in Super-Kamiokande I-V

    Full text link
    Neutrino oscillation experiments have demonstrated evidence for three distinct neutrino masses. However, whether there are two light neutrinos and one heavy neutrino (normal), or the other way around (inverted), known as the neutrino mass ordering, remains undetermined. This thesis presents a search for indications of the neutrino mass ordering in 6511 live-days (484 kiloton-years) of atmospheric neutrino data collected with the Super-Kamiokande (SK) detector between 1996 and 2020. The data set is a 30% increase in exposure since the previous published analysis, and the analysis methodology includes improvements to the separation of neutrino and antineutrino data. This thesis also presents an analysis of the SK data with constraints on neutrino oscillation parameters from reactor neutrino experiments and the T2K long-baseline experiment. The constraints from the T2K experiment include, for the first time, an anti-neutrino-enhanced data sample. The atmospheric-only analysis favors the normal neutrino mass ordering with Δχ2I.O.−N.O. = 5.98, and the inclusion of external constraints increases the preference to Δχ2I.O.−N.O. = 10.13

    Introduction of a SiFA moiety into the D-glutamate chain of DOTA-PP-F11N results in radiohybrid-based CCK-2R-targeted compounds with improved pharmacokinetics in vivo

    Get PDF
    In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition, minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised and evaluated. CCK-2R affinity (IC50, AR42J cells) and lipophilicity (logD7.4) were determined. Biodistribution studies at 24 h post-injection (p.i.) and µSPECT/CT imaging at 1, 4 and 24 h p.i. were carried out in AR42J tumour-bearing CB17-SCID mice. CCK-2R affinity of (R)-DOTAGA-rhCCK-1 to 18 was enhanced with increasing distance between the SiFA building block and the binding motif. Lipophilicity of [177Lu]Lu-(R)-DOTAGA-rhCCK-1 to 18 was higher compared to that of [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04. The respective α- and γ-linked rhCCK derivatives revealing the highest CCK-2R affinity were further evaluated in vivo. In comparison with [177Lu]Lu-DOTA-PP-F11N, [177Lu-]Lu-(R)-DOTAGA-rhCCK-9 and -16 exhibited three- to eight-fold increased activity levels in the tumour at 24 h p.i. However, activity levels in the kidneys were elevated as well. We could show that the introduction of a lipophilic SiFA moiety into the hydrophilic backbone of [177Lu]Lu-DOTA-PP-F11N led to a decelerated blood clearance and thus improved tumour retention. However, elevated kidney retention has to be addressed in future studies

    Measuring the flatness of focal plane for very large mosaic CCD camera

    Full text link
    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k×\times2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.Comment: Presented at SPIE Conference,Ground-based and Airborne Instrumentation for Astronomy III, San Diego, 201

    Development of the first 18F-labeled radiohybrid-based minigastrin derivative with high target affinity and tumor accumulation by substitution of the chelating moiety

    Get PDF
    In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18

    Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo

    Get PDF
    In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model
    corecore