1,572 research outputs found

    Narrowband, crystal-controlled biomedical telemetry system

    Get PDF
    Telemetry system utilizing miniature, single-channel, crystal-controlled transmitter is described suitable for biomedical applications. Receiver used in conjunction with transmitter is narrowband superheterodyne FM receiver with crystal control in both conversion stages

    Tax Delinquency and County Ownership of Land in South Dakota

    Get PDF

    A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Get PDF
    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference

    Violation of the Cauchy-Schwarz inequality with matter waves

    Get PDF
    The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlations can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones of the collision halo. The correlated atoms have large spatial separations and therefore open new opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.Comment: Final published version (with minor changes). 5 pages, 3 figures, plus Supplementary Materia

    Using atomic interference to probe atom-surface interaction

    Get PDF
    We show that atomic interference in the reflection from two suitably polarized evanescent waves is sensitive to retardation effects in the atom-surface interaction for specific experimental parameters. We study the limit of short and long atomic de Broglie wavelength. The former case is analyzed in the semiclassical approximation (Landau-Zener model). The latter represents a quantum regime and is analyzed by solving numerically the associated coupled Schroedinger equations. We consider a specific experimental scheme and show the results for rubidium (short wavelength) and the much lighter meta-stable helium atom (long wavelength). The merits of each case are then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX sourc

    Not Just Efficiency: Insolvency Law in the EU and Its Political Dimension

    Get PDF
    Certain insolvency law rules, like creditors’ priorities and set-off rights, have a distributive impact on creditors. Distributional rules reflect the hierarchies of values and interests in each jurisdiction and, as a result, have high political relevance and pose an obstacle to reforming the EU Insolvency Regulation. This paper will show the difficulty of reform by addressing two alternative options to regulate cross-border insolvencies in the European Union. The first one is the ‘choice model’, under which companies can select the insolvency law they prefer. Although such a model would allow distressed firms to select the most efficient insolvency law, it would also displace Member States’ power to protect local constituencies. The choice model therefore produces negative externalities and raises legitimacy concerns. The opposite solution is full harmonisation of insolvency law at EU level, including distributional rules. Full harmonisation would have the advantage of internalising all externalities produced by cross-border insolvencies. However, the EU legislative process, which is still based on negotiations between states, is not apt to decide on distributive insolvency rules; additionally, if harmonisation includes such rules, it will indirectly modify national social security strategies and equilibria. This debate shows that the choice regarding power allocation over bankruptcies in the EU depends on the progress of European integration and is mainly a matter of political legitimacy, not only of efficiency

    Real time approach to tunneling in open quantum systems: decoherence and anomalous diffusion

    Full text link
    Macroscopic quantum tunneling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunneling effect of the isolated system and the effect of the environment is described by an equation that it is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunneling time the master equation can be approximated by a Kramers like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunneling.Comment: 25 pages, 1 figur

    Producing and Detecting Correlated atoms

    Full text link
    We discuss experiments to produce and detect atom correlations in a degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic analog of the celebrated Hanbury Brown Twiss experiment, in which atom correlations result simply from interference effects without any atom interactions.We have performed this experiment for both bosons and fermions. Next we show how atom interactions produce correlated atoms using the atomic analog of spontaneous four-wavemixing. Finally, we briefly mention experiments on a one dimensional gas on an atom chip in which correlation effects due to both interference and interactions have been observed.Comment: to appear in conference proceedings "Atomic Physics 20
    • …
    corecore