853 research outputs found

    Seeds and the Art of Genome Maintenance

    Get PDF
    Successful germination represents a crucial developmental transition in the plant lifecycle and is important both for crop yields and plant survival in natural ecosystems. However, germination potential decreases during storage and seed longevity is a key determinant of crop production. Decline in germination vigor is initially manifest as an increasing delay to radicle emergence and the completion of germination and eventually culminating in loss of seed viability. The molecular mechanisms that determine seed germination vigor and viability remain obscure, although deterioration in seed quality is associated with the accumulation of damage to cellular structures and macromolecules including lipids, protein, and nucleic acids. In desiccation tolerant seeds, desiccation/rehydration cycles and prolonged periods in the dry quiescent state are associated with remarkable levels of stress to the embryo genome which can result in mutagenesis of the genetic material, inhibition of transcription and replication and delayed growth and development. An increasing number of studies are revealing DNA damage accumulated in the embryo genome, and the repair capacity of the seed to reverse this damage, as major factors that determine seed vigor and viability. Recent findings are now establishing important roles for the DNA damage response in regulating germination, imposing a delay to germination in aged seed to minimize the deleterious consequences of DNA damage accumulated in the dry quiescent state. Understanding the mechanistic basis of seed longevity will underpin the directed improvement of crop varieties and support preservation of plant genetic resources in seed banks

    Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

    Get PDF
    Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Outline of a Genome Navigation System Based on the Properties of GA-Sequences and Their Flanks

    Get PDF
    Introducing a new method to visualize large stretches of genomic DNA (see Appendix S1) the article reports that most GA-sequences [1] shared chains of tetra-GA-motifs and contained upstream poly(A)-segments. Although not integral parts of them, Alu-elements were found immediately upstream of all human and chimpanzee GA-sequences with an upstream poly(A)-segment. The article hypothesizes that genome navigation uses these properties of GA-sequences in the following way. (1) Poly(A) binding proteins interact with the upstream poly(A)-segments and arrange adjacent GA-sequences side-by-side (‘GA-ribbon’), while folding the intervening DNA sequences between them into loops (‘associated DNA-loops’). (2) Genome navigation uses the GA-ribbon as a search path for specific target genes that is up to 730-fold shorter than the full-length chromosome. (3) As to the specificity of the search, each molecule of a target protein is assumed to catalyze the formation of specific oligomers from a set of transcription factors that recognize tetra-GA-motifs. Their specific combinations of tetra-GA motifs are assumed to be present in the particular GA-sequence whose associated loop contains the gene for the target protein. As long as the target protein is abundant in the cell it produces sufficient numbers of such oligomers which bind to their specific GA-sequences and, thereby, inhibit locally the transcription of the target protein in the associated loop. However, if the amount of target protein drops below a certain threshold, the resultant reduction of specific oligomers leaves the corresponding GA-sequence ‘denuded’. In response, the associated DNA-loop releases its nucleosomes and allows transcription of the target protein to proceed. (4) The Alu-transcripts may help control the general background of protein synthesis proportional to the number of transcriptionally active associated loops, especially in stressed cells. (5) The model offers a new mechanism of co-regulation of protein synthesis based on the shared segments of different GA-sequences

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Attentional bias retraining in cigarette smokers attempting smoking cessation (ARTS): study protocol for a double bline randomised controlled trial

    Get PDF
    YesSmokers attend preferentially to cigarettes and other smoking-related cues in the environment, in what is known as an attentional bias. There is evidence that attentional bias may contribute to craving and failure to stop smoking. Attentional retraining procedures have been used in laboratory studies to train smokers to reduce attentional bias, although these procedures have not been applied in smoking cessation programmes. This trial will examine the efficacy of multiple sessions of attentional retraining on attentional bias, craving, and abstinence in smokers attempting cessation. This is a double-blind randomised controlled trial. Adult smokers attending a 7-session weekly stop smoking clinic will be randomised to either a modified visual probe task with attentional retraining or placebo training. Training will start 1 week prior to quit day and be given weekly for 5 sessions. Both groups will receive 21 mg transdermal nicotine patches for 8–12 weeks and withdrawal-orientated behavioural support for 7 sessions. Primary outcome measures are the change in attentional bias reaction time and urge to smoke on the Mood and Physical Symptoms Scale at 4 weeks post-quit. Secondary outcome measures include differences in withdrawal, time to first lapse and prolonged abstinence at 4 weeks post-quit, which will be biochemically validated at each clinic visit. Follow-up will take place at 8 weeks, 3 months and 6 months post-quit. This is the first randomised controlled trial of attentional retraining in smokers attempting cessation. This trial could provide proof of principle for a treatment aimed at a fundamental cause of addiction.National Institute for Health Research (NIHR) Doctoral Research Fellowship (DRF) awarded to RB (DRF-2009-02-15

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Rhizome Severing Increases Root Lifespan of Leymus chinensis in a Typical Steppe of Inner Mongolia

    Get PDF
    Root lifespan is an important trait that determines plants' ability to acquire and conserve soil resources. There have been several studies investigating characteristics of root lifespan of both woody and herbaceous species. However, most of the studies have focused on non-clonal plants, and there have been little data on root lifespan for clonal plants that occur widely in temperate grasslands.We investigated the effects of rhizome severing on overall root lifespan of Leymus chinensis, a clonal, dominant grass species in the temperate steppe in northern China, in a 2-year field study using modified rhizotron technique. More specifically, we investigated the effects of rhizome severing on root lifespan of roots born in different seasons and distributed at different soil depths. Rhizome severing led to an increase in the overall root lifespan from 81 to 103 days. The increase in root lifespan exhibited spatial and temporal characteristics such that it increased lifespan for roots distributed in the top two soil layers and for roots born in summer and spring, but it had no effect on lifespan of roots in the deep soil layer and born in autumn. We also examined the effect of rhizome severing on carbohydrate and N contents in roots, and found that root carbohydrate and N contents were not affected by rhizome severing. Further, we found that root lifespan of Stipa krylovii and Artemisia frigida, two dominant, non-clonal species in the temperate steppe, was significantly longer (118 d) than that of L. chinensis (81 d), and this value became comparable to that of L. chinensis under rhizome severing (103 d).We found that root lifespan in dominant, clonal L. chinensis was shorter than for the dominant, non-clonal species of S. krylovii and A. frigida. There was a substantial increase in the root lifespan of L. chinensis in response to severing their rhizomes, and this increase in root lifespan exhibited temporal and spatial characteristics. These findings suggest that the presence of rhizomes is likely to account for the observed short lifespan of clonal plant species in the temperate steppe

    Chlamydia trachomatis ompA Variants in Trachoma: What Do They Tell Us?

    Get PDF
    Trachoma is an important cause of blindness resulting from transmission of the bacterium Chlamydia trachomatis. One way to understand better how this infection is transmitted and how the human immune system controls it is to study the strains of bacteria associated with infection. Comparing strains before and after treatment might help us learn if someone has a new infection or the same one as before. Identifying differences between disease-causing strains should help us understand how infection leads to disease and how the human host defences work. We chose to study variation in the chlamydial gene ompA because it determines the protein MOMP, one of the leading candidates for inclusion in a vaccine to prevent trachoma. If immunity to MOMP is important in natural trachoma infections, we would expect to find evidence of this in the way the strains varied. We did not find this, but instead found that two common strains seemed to cause different types of disease. Although their MOMPs were very slightly different, this did not really explain the differences. We conclude that methods of typing strains going beyond the ompA gene will be needed to help us understand the interaction between Chlamydia and its human host
    corecore