7,258 research outputs found

    Fast-killing parasites can be favoured in spatially structured populations

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.It is becoming increasingly clear that the evolution of infectious disease is influenced by host population structure. Theory predicts that parasites should be more 'prudent'-less transmissible-in spatially structured host populations. However, here we (i) highlight how low transmission, the phenotype being selected for in this in context, may also be achieved by rapacious host exploitation, if fast host exploitation confers a local, within-host competitive advantage and (ii) test this novel concept in a bacteria-virus system. We found that limited host availability and, to a lesser extent, low relatedness favour faster-killing parasites with reduced transmission. By contrast, high host availability and high relatedness favour slower-killing, more transmissible parasites. Our results suggest high, rather than low, virulence may be selected in spatially structured host-parasite communities where local competition and hence selection for a within-host fitness advantage is high.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.This work was funded by NERC, AXA Research fund, BBSRC, the Royal Society and The Royal Commission for the Exhibition of 185

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

    Get PDF
    Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study

    Harnessing Demographic Differences in Organizations: What Moderates the Effects of Workplace Diversity?

    Get PDF
    To account for the double-edged nature of demographic workplace diversity (i.e. relational demography, work group diversity, and organizational diversity) effects on social integration, performance and well-being related variables, research has moved away from simple main effect approaches and started examining variables that moderate these effects. While there is no shortage of primary studies of the conditions under which diversity leads to positive or negative outcomes, it remains unclear which contingency factors make it work. Using the Categorization-Elaboration Model (van Knippenberg, DeDreu, & Homan 2004) as our theoretical lens we review variables moderating the effects of workplace diversity on social integration, performance and well-being outcomes, focusing on factors that organizations and managers have control over (i.e. strategy, unit design, HR, leadership, climate/culture, and individual differences). We point out avenues for future research and conclude with practical implications

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure

    Is Bacterial Persistence a Social Trait?

    Get PDF
    The ability of bacteria to evolve resistance to antibiotics has been much reported in recent years. It is less well-known that within populations of bacteria there are cells which are resistant due to a non-inherited phenotypic switch to a slow-growing state. Although such ‘persister’ cells are receiving increasing attention, the evolutionary forces involved have been relatively ignored. Persistence has a direct benefit to cells because it allows survival during catastrophes–a form of bet-hedging. However, persistence can also provide an indirect benefit to other individuals, because the reduced growth rate can reduce competition for limiting resources. This raises the possibility that persistence is a social trait, which can be influenced by kin selection. We develop a theoretical model to investigate the social consequences of persistence. We predict that selection for persistence is increased when: (a) cells are related (e.g. a single, clonal lineage); and (b) resources are scarce. Our model allows us to predict how the level of persistence should vary with time, across populations, in response to intervention strategies and the level of competition. More generally, our results clarify the links between persistence and other bet-hedging or social behaviours

    Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport

    Get PDF
    Contaminants that are highly soluble in groundwater are rapidly transported via fractures in mechanically resistant sedimentary rock aquifers. Hence, a rigorous methodology is needed to estimate groundwater flow velocities in such fractured aquifers. Here, we propose an approach using borehole hydraulic testing to compute flow velocities in an un-faulted area of a fractured carbonate aquifer by applying the cubic law to a parallel plate model. The Cadeby Formation (Yorkshire, NE England) – a Permian dolostone aquifer present beneath the University of Leeds Farm - is the fractured aquifer selected for this hydraulic experiment. The bedding plane fractures of this dolostone aquifer, which are sub-horizontal, sub-parallel and laterally persistent, largely dominate the flow at shallow (<~40 mBGL) depths. These flowing bedding plane discontinuities are separated by a rock matrix which is relatively impermeable (Kwell-test/Kcore-plug~104) as is common in fractured carbonate aquifers. In the workflow reported here, the number of flowing fractures - mainly bedding plane fractures - intersecting three open monitoring wells are found from temperature/fluid conductivity and acoustic/optical televiewer logging. Following well installation, average fracture hydraulic apertures for screened intervals are found from analysis of slug tests. For the case study aquifer, this workflow predicts hydraulic apertures ranging from 0.10 up to 0.54 mm. However, groundwater flow velocities range within two order of magnitude from 13 up to 242 m/day. Notably, fracture apertures and flow velocities rapidly reduce with increasing depth below the water table; the upper ~10 m shows relatively high values of hydraulic conductivity (0.30–2.85 m/day) and corresponding flow velocity (33–242 m/day). Permeability development around the water table in carbonate aquifer-types is common, and arises where high pCO2 recharge water from the soil zone causes calcite/dolomite dissolution. Hence, agricultural contaminants entering the aquifer with recharge water are laterally transported rapidly within this upper part. Computation of groundwater flow velocities allows determination of the Reynolds number. Values of up ~1, indicating the lower limit of the transition from laminar to turbulent flow, are found at the studied site, which is situated away from major fault traces. Hence, turbulent flow is likely to arise in proximity to tectonic structures, such as normal faults, which localize flow and enhance karstification. The occurrence of turbulent flow in correspondence of such tectonic structures should be represented in regional groundwater flow simulations

    Competition between species can stabilize public-goods cooperation within a species

    Get PDF
    Competition between species is a major ecological force that can drive evolution. Here, we test the effect of this force on the evolution of cooperation within a species. We use sucrose metabolism of budding yeast, Saccharomyces cerevisiae, as a model cooperative system that is subject to social parasitism by cheater strategies. We find that when cocultured with a bacterial competitor, Escherichia coli, the frequency of cooperator phenotypes in yeast populations increases dramatically as compared with isolated yeast populations. Bacterial competition stabilizes cooperation within yeast by limiting the yeast population density and also by depleting the public goods produced by cooperating yeast cells. Both of these changes induced by bacterial competition increase the cooperator frequency because cooperator yeast cells have a small preferential access to the public goods they produce; this preferential access becomes more important when the public good is scarce. Our results indicate that a thorough understanding of species interactions is crucial for explaining the maintenance and evolution of cooperation in nature.United States. National Institutes of Health (GM085279‐02)National Science Foundation (U.S.) (PHY‐1055154)Alfred P. Sloan Foundation (BR2011‐066

    Design Principles for Plasmonic Nanoparticle Devices

    Get PDF
    For all applications of plasmonics to technology it is required to tailor the resonance to the optical system in question. This chapter gives an understanding of the design considerations for nanoparticles needed to tune the resonance. First the basic concepts of plasmonics are reviewed with a focus on the physics of nanoparticles. An introduction to the finite element method is given with emphasis on the suitability of the method to nanoplasmonic device simulation. The effects of nanoparticle shape on the spectral position and lineshape of the plasmonic resonance are discussed including retardation and surface curvature effects. The most technologically important plasmonic materials are assessed for device applicability and the importance of substrates in light scattering is explained. Finally the application of plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear Nanoplasmonics
    corecore