11,220 research outputs found
Optimized Dynamical Decoupling for Time Dependent Hamiltonians
The validity of optimized dynamical decoupling (DD) is extended to
analytically time dependent Hamiltonians. As long as an expansion in time is
possible the time dependence of the initial Hamiltonian does not affect the
efficiency of optimized dynamical decoupling (UDD, Uhrig DD). This extension
provides the analytic basis for (i) applying UDD to effective Hamiltonians in
time dependent reference frames, for instance in the interaction picture of
fast modes and for (ii) its application in hierarchical
DD schemes with pulses about two perpendicular axes in spin space. to
suppress general decoherence, i.e., longitudinal relaxation and dephasing.Comment: 5 pages, no figure
Quantum Computing with Continuous-Variable Clusters
Continuous-variable cluster states offer a potentially promising method of
implementing a quantum computer. This paper extends and further refines
theoretical foundations and protocols for experimental implementation. We give
a cluster-state implementation of the cubic phase gate through photon
detection, which, together with homodyne detection, facilitates universal
quantum computation. In addition, we characterize the offline squeezed
resources required to generate an arbitrary graph state through passive linear
optics. Most significantly, we prove that there are universal states for which
the offline squeezing per mode does not increase with the size of the cluster.
Simple representations of continuous-variable graph states are introduced to
analyze graph state transformations under measurement and the existence of
universal continuous-variable resource states.Comment: 17 pages, 5 figure
Absolute photoionization cross section measurements of the Kr I-isoelectronic sequence
Photoionization spectra have been recorded in the 4s, 4p and 3d resonance regions for the Kr Iisoelectronic sequence using both the dual laser produced plasma technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s − np resonances of Rb+ and Sr2+. Many new 4p " ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb+ and Sr2+ ions show preferential decay via double photoionization. This is only the second report where both the DLP technique and the merged beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e. better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged beam technique) are highlighted
Aspects of higher curvature terms and U-duality
We discuss various aspects of dimensional reduction of gravity with the
Einstein-Hilbert action supplemented by a lowest order deformation formed as
the Riemann tensor raised to powers two, three or four. In the case of R^2 we
give an explicit expression, and discuss the possibility of extended coset
symmetries, especially SL(n+1,Z) for reduction on an n-torus to three
dimensions. Then we start an investigation of the dimensional reduction of R^3
and R^4 by calculating some terms relevant for the coset formulation, aiming in
particular towards E_8(8)/(Spin(16)/Z_2) in three dimensions and an
investigation of the derivative structure. We emphasise some issues concerning
the need for the introduction of non-scalar automorphic forms in order to
realise certain expected enhanced symmetries.Comment: 26 pp., 15 figs., plain te
Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration
Reliable long-time storage of arbitrary quantum states is a key element for
quantum information processing. In order to dynamically decouple a spin or
quantum bit from a dephasing environment, we introduce an optimized sequence of
control pulses of finite durations \tau\pp and finite amplitudes. The
properties of this sequence of length stem from a mathematically rigorous
derivation. Corrections occur only in order and \tau\pp^3 without
mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing
experiments, a concrete setup for the verification of the properties of the
advocated realistic sequence is proposed.Comment: 8 pages, 1 figur
A 15-year perspective of the fabry outcome survey
The Fabry Outcome Survey (FOS) is an international long-term observational registry sponsored by Shire for patients diagnosed with Fabry disease who are receiving or are candidates for therapy with agalsidase alfa (agala). Established in 2001, FOS provides long-term data on agala safety/efficacy and collects data on the natural history of Fabry disease, with the aim of improving clinical management. The FOS publications have helped establish prognostic and severity scores, defined the incidence of specific disease variants and implications for clinical management, described clinical manifestations in special populations, confirmed the high prevalence of cardiac morbidity, and demonstrated correlations between ocular changes and Fabry disease severity. These FOS data represent a rich resource with utility not only for description of natural history/therapeutic effects but also for exploratory hypothesis testing and generation of tools for diagnosis/management, with the potential to improve future patient outcomes
Characterization of the three Arabidopsis thaliana RAD21 cohesins reveals differential responses to ionizing radiation
The RAD21/REC8 gene family has been implicated in sister chromatid cohesion and DNA repair in several organisms. Unlike most eukaryotes, Arabidopsis thaliana has three RAD21 gene homologues, and their cloning and characterization are reported here. All three genes, AtRAD21.1, AtRAD21.2, and AtRAD21.3, are expressed in tissues rich in cells undergoing cell division, and AtRAD21.3 shows the highest relative level of expression. An increase in steady-state levels of AtRAD21.1 transcript was also observed, specifically after the induction of DNA damage. Phenotypic analysis of the atrad21.1 and atrad21.3 mutants revealed that neither of the single mutants was lethal, probably due to the redundancy in function of the AtRAD21 genes. However, AtRAD21.1 plays a critical role in recovery from DNA damage during seed imbibition, prior to germination, as atrad21.1 mutant seeds are hypersensitive to radiation damag
Onset of Delocalization in Quasi-1D Waveguides with Correlated Surface Disorder
We present first analytical results on transport properties of many-mode
waveguides with rough surfaces having long-range correlations. We show that
propagation of waves through such waveguides reveals a quite unexpected
phenomena of a complete transparency for a subset of propagating modes. These
modes do not interact with each other and effectively can be described by the
theory of 1D transport with correlated disorder. We also found that with a
proper choice of model parameters one can arrange a perfect transparency of
waveguides inside a given window of energy of incoming waves. The results may
be important in view of experimental realizations of a selective transport in
application to both waveguides and electron/optic nanodevices.Comment: RevTex, 4 pages, no figures, few references are adde
Coulomb Drag in the Extreme Quantum Limit
Coulomb drag resulting from interlayer electron-electron scattering in double
layer 2D electron systems at high magnetic field has been measured. Within the
lowest Landau level the observed drag resistance exceeds its zero magnetic
value by factors of typically 1000. At half-filling of the lowest Landau level
in each layer (nu = 1/2) the data suggest that our bilayer systems are much
more strongly correlated than recent theoretical models based on perturbatively
coupled composite fermion metals.Comment: 4 pages, 4 figure
- …