2,258 research outputs found

    The rotation and Galactic kinematics of mid M dwarfs in the Solar Neighborhood

    Full text link
    Rotation is a directly-observable stellar property, and drives magnetic field generation and activity through a magnetic dynamo. Main sequence stars with masses below approximately 0.35Msun (mid-to-late M dwarfs) are fully-convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insights into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth transit survey, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the Northern hemisphere, finding periods from 0.1 to 140 days. The typical detected rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5 to 1%. We find no period-amplitude relation for stars below 0.25Msun and an anti-correlation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly-rotating stars without H{\alpha} emission that nevertheless have strong photometric variability. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the Solar Neighborhood. We use the W space velocities and established age-velocity relations to estimate that stars with P<10 days are on average <2 Gyrs, and that those with P>70 days are about 5 Gyrs. The period distribution is mass dependent: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods. [Abridged]Comment: Accepted to ApJ. Machine readable tables and additional figures are available in the published article or on reques

    Machine learning model for event-based prognostics in gas circulator condition monitoring

    Get PDF
    Gas circulator (GC) units are an important rotating asset used in the Advanced Gas-cooled Reactor (AGR) design, facilitating the flow of CO2 gas through the reactor core. The ongoing maintenance and examination of these machines is important for operators in order to maintain safe and economic generation. GCs experience a dynamic duty cycle with periods of non-steady state behavior at regular refuelling intervals, posing a unique analysis problem for reliability engineers. In line with the increased data volumes and sophistication of available the technologies, the investigation of predictive and prognostic measurements has become a central interest in rotating asset condition monitoring. However, many of the state-of-the-art approaches finding success deal with the extrapolation of stationary time series feeds, with little to no consideration of more-complex but expected events in the data. In this paper we demonstrate a novel modelling approach for examining refuelling behaviors in GCs, with a focus on estimating their health state from vibration data. A machine learning model was constructed using the operational history of a unit experiencing an eventual inspection-based failure. This new approach to examining GC condition is shown to correspond well with explicit remaining useful life (RUL) measurements of the case study, improving on the existing rudimentary extrapolation methods often employed in rotating machinery health monitoring

    Ion-Exchanged Waveguides in Glass Doped with PbS Quantum Dots

    Get PDF
    The lowest-loss (≤1 dB/cm) ion-exchanged waveguides in glass doped with PbS quantum dots are presented. Near-field mode profile and refractive index profile using the refracted near-field technique were measured for these waveguides. We demonstrate that the optical properties of this glass unchanged during the ion-exchange process

    Optical Design and Status of the Large Ultra-Violet Optical Infrared Surveyor (LUVOIR)

    Get PDF
    "In preparation for the Astrophysics 2020 Decadal Survey NASA's Goddard Space Flight Center is studying a segmented aperture telescope with broad astrophysics, solar system, and exoplanet science capability called the Large Ultra-Violet Optical Infrared Surveyor (LUVOIR). This telescope design incorporates many heritage design concepts from the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and the Wide-field Infrared Survey Telescope (WFIRST). This includes similar ultraviolet instrumentation from HST, deployable segmented optics from JWST, and high-contrast coronagraph technology from WFIRST. Several optical design trades were completed to maximize the science product while maintaining reasonable packaging and fabrication constraints. Other technology developments such as freeform optics, UV enhanced coatings, coronagraph design, and ultra-stable mirrors are being studied to further improve the observatory performance

    The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    Get PDF
    BACKGROUND: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. OBJECTIVES: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. METHODS: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. RESULTS: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). CONCLUSIONS: The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124:1776-1784; http://dx.doi.org/10.1289/EHP177
    • …
    corecore