5 research outputs found

    Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis

    Get PDF
    INTRODUCTION: Adrenomedullin (AM) is secreted by breast cancer cells and increased by hypoxia. It is a multifunctional peptide that stimulates angiogenesis and proliferation. The peptide is also a potent paracrine stimulator of osteoblasts and bone formation, suggesting a role in skeletal metastases-a major site of treatment-refractory tumor growth in patients with advanced disease. METHODS: The role of adrenomedullin in bone metastases was tested by stable overexpression in MDA-MB-231 breast cancer cells, which cause osteolytic bone metastases in a standard animal model. Cells with fivefold increased expression of AM were characterized in vitro, inoculated into immunodeficient mice and compared for their ability to form bone metastases versus control subclones. Bone destruction was monitored by X-ray, and tumor burden and osteoclast numbers were determined by quantitative histomorphometry. The effects of AM overexpression on tumor growth and angiogenesis in the mammary fat pad were determined. The effects of AM peptide on osteoclast-like multinucleated cell formation were tested in vitro. A small-molecule AM antagonist was tested for its effects on AM-stimulated ex vivo bone cell cultures and co-cultures with tumor cells, where responses of tumor and bone were distinguished by species-specific real-time PCR. RESULTS: Overexpression of AM mRNA did not alter cell proliferation in vitro, expression of tumor-secreted factors or cell cycle progression. AM-overexpressing cells caused osteolytic bone metastases to develop more rapidly, which was accompanied by decreased survival. In the mammary fat pad, tumors grew more rapidly with unchanged blood vessel formation. Tumor growth in the bone was also more rapid, and osteoclasts were increased. AM peptide potently stimulated bone cultures ex vivo; responses that were blocked by small-molecule adrenomedullin antagonists in the absence of cellular toxicity. Antagonist treatment dramatically suppressed tumor growth in bone and decreased markers of osteoclast activity. CONCLUSIONS: The results identify AM as a target for therapeutic intervention against bone metastases. Adrenomedullin potentiates osteolytic responses in bone to metastatic breast cancer cells. Small-molecule antagonists can effectively block bone-mediated responses to tumor-secreted adrenomedullin, and such agents warrant development for testing in vivo

    CEERS Key Paper VII: Emission Line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z>2

    Full text link
    We use James Webb Space Telescope Near-Infrared Camera Wide Field Slitless Spectroscopy (NIRCam WFSS) and Near-Infrared spectrograph (NIRSpec) in the Cosmic Evolution Early Release survey (CEERS) to measure rest-frame optical emission-line of 155 galaxies at z>2. The blind NIRCam grism observations include a sample of galaxies with bright emission lines that were not observed on the NIRSpec masks. We study the changes of the Ha, [OIII]/Hb, and [NeIII]/[OII] emission lines in terms of redshift by comparing to lower redshift SDSS and CLEAR samples. We find a significant (>3σ\sigma) correlation between [OIII]/Hb with redshift, while [NeIII]/[OII] has a marginal (2σ\sigma) correlation with redshift. We compare [OIII]/Hb and [NeIII]/[OII] to stellar mass and Hb SFR. We find that both emission-line ratios have a correlation with Hb SFR and an anti-correlation with stellar mass across the redshifts 0<z<9. Comparison with MAPPINGS~V models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-SFR galaxies. We additionally compare to IllustriousTNG predictions and find that they effectively describe the highest [OIII]/Hb ratios observed in our sample, without the need to invoke MAPPINGS models with significant shock ionizionation components.Comment: 16 pages, 11 figure

    Intracellular Proadrenomedullin-Derived Peptides Decorate the Microtubules and Contribute to Cytoskeleton Function

    Get PDF
    Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are secretory hormones, but it is not unusual to find them in intracellular compartments. Using yeast-2 hybrid technology, we found interactions between AM and several microtubule-associated proteins (MAPs), and between PAMP and tubulin. Expression of fluorescent-tagged AM and PAMP as well as immunofluorescence for the native peptides showed a complete decoration of the microtubules and colocalization with other MAPs. PAMP, but not AM, bound to tubulin in vitro and destabilized tubulin polymerization. Down-regulation of the gene coding for both AM and PAMP through small interfering RNA technology resulted in morphological changes, microtubule stabilization, increase in posttranslational modifications of tubulin such as acetylation and detyrosination, reduction in cell motility, and partial arrest at the G2 phase of the cell cycle, when compared with cells transfected with the same vector carrying a scrambled sequence. These results show that PAMP is a novel MAP, whereas AM may be exerting more subtle effects in regulating cytoskeleton function
    corecore