7,217 research outputs found
Is there a reentrant glass in binary mixtures?
By employing computer simulations for a model binary mixture, we show that a
reentrant glass transition upon adding a second component only occurs if the
ratio of the short-time mobilities between the glass-forming component
and the additive is sufficiently small. For , there is no
reentrant glass, even if the size asymmetry between the two components is
large, in accordance with two-component mode coupling theory. For , on the other hand, the reentrant glass is observed and reproduced only by
an effective one-component mode coupling theory.Comment: 4 pages, 3 figure
Dileptons from hot heavy static photons
We compute the production rate of lepton pair by static photons at finite
temperature at two-loop order. We treat the infrared region of the gluon phase
space carefully by using a hard thermal loop gluon propagator. The result is
free of infrared and collinear divergences and exhibits an enhancement which
produces a result of order instead of as would be
expected from ordinary perturbation theory.Comment: 14 pages, 2 figure
Rosenfeld functional for non-additive hard spheres
The fundamental measure density functional theory for hard spheres is
generalized to binary mixtures of arbitrary positive and moderate negative
non-additivity between unlike components. In bulk the theory predicts
fluid-fluid phase separation into phases with different chemical compositions.
The location of the accompanying critical point agrees well with previous
results from simulations over a broad range of non-additivities and both for
symmetric and highly asymmetric size ratios. Results for partial pair
correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure
Numerical study of the glass-glass transition in short-ranged attractive colloids
We report extensive numerical simulations in the {\it glass} region for a
simple model of short-ranged attractive colloids, the square well model. We
investigate the behavior of the density autocorrelation function and of the
static structure factor in the region of temperatures and packing fractions
where a glass-glass transition is expected according to theoretical
predictions. We strengthen our observations by studying both waiting time and
history dependence of the numerical results. We provide evidence supporting the
possibility that activated bond-breaking processes destabilize the attractive
glass, preventing the full observation of a sharp glass-glass kinetic
transition.Comment: 15 pages, 9 figures; Proceedings of "Structural Arrest Transitions in
Colloidal Systems with Short-Range Attractions", Messina, Italy, December
2003 (submitted to J. Phys.: Condens. Matt.
Spatial models of cell distribution in human lumbar dorsal root ganglia
Dorsal root ganglia (DRG), which contain the somata of primary sensory neurons, have increasingly been considered as novel targets for clinical neural interfaces, both for neuroprosthetic and pain applications. Effective use of either neural recording or stimulation technologies requires an appropriate spatial position relative to the target neural element, whether axon or cell body. However, the internal three- dimensional spatial organization of human DRG neural fibers and somata has not been quantitatively described. In this study, we analyzed 202 cross- sectional images across the length of 31 human L4 and L5 DRG from 10 donors. We used a custom semi- automated graphical user interface to identify the locations of neural elements in the images and normalize the output to a consistent spatial reference for direct comparison by spinal level. By applying a recursive partitioning algorithm, we found that the highest density of cell bodies at both spinal levels could be found in the inner 85% of DRG length, the outer- most 25- 30% radially, and the dorsal- most 69- 76%. While axonal density was fairly homogeneous across the DRG length, there was a distinct low density region in the outer 7- 11% radially. These findings are consistent with previous qualitative reports of neural distribution in DRG. The quantitative measurements we provide will enable improved targeting of future neural interface technologies and DRG- focused pharmaceutical therapies, and provide a rigorous anatomical description of the bridge between the central and peripheral nervous systems.Dorsal root ganglia (DRG) are novel targets for neural interface technologies that treat neurological disorders, such as chronic pain and spinal cord injury. The three- dimensional cellular anatomy of DRG are not well- mapped, particularly in humans, limiting the effectiveness of neurotechnology. We developed a semi- automated algorithm to quantify the three- dimensional distribution of neural elements in histologically- processed tissue. We applied this algorithm to sequential NF200- stained histology slices obtained from human lumbar DRG and demonstrated that cell bodies typically congregate around the dorsal edge of the ganglia. These results are crucial to the development of safe and effective clinical neural interface technologies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155471/1/cne24848_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155471/2/cne24848.pd
Netrin-3: Tracking the Elusive Antimitotic Signal on the Western Frontier
Netrin-3 is a guidance protein expressed throughout the animal kingdom, and involved in the development of branched structures such as the nervous system, lung, and mammary gland. We have previously shown that peptides derived from this protein serve as chemorepellents and mitotic inhibitors in Tetrahymena thermophila. Our previous work shows that Tetrahymena synthesize and secrete a netrin-3-like protein, as detected by ELISA. In this study, we find that a netrin-3-like protein is present in whole cell extract and secreted protein, as detected by Western blotting. A protein of approximately 48 kD is consistently detected in our Western blots. In addition, we often detect a protein of 52 kD, which may be the netrin-1-like protein of Tetrahymena that we have previously described. Further studies will enable us to determine whether the 52-kD protein is indeed the netrin-1 like protein of Tetrahymena
A method to disentangle single- and multi-meson production in missing mass spectra from quasi-free pn --> pn X reactions
The separation of contributions from multi- and single-meson production in
the missing mass spectrum of the quasi-free pn --> pnX reaction constitutes
a~challenging task when the reaction is studied close to threshold. This is
especially true if the resolution of the mass determination is comparable with
the excess energy and if the investigated signal appears close to the
kinematical limit. In this article we outline a method which permits the
extraction of the signal originating from the creation of a single meson
without the necessity of conducting model-dependent simulations. For the pd -->
pnXp(spectator) reactions, the method allows one to combine events
corresponding to multi-meson production at various excess energies with respect
to the pn --> pn meson process, and hence leads to an increase of the
statistics needed for the determination of the shape of the multi-meson
background.
As an example of the application of the method, we demonstrate that the
evaluation of the data from the pd --> pnXp(sp) process according to the
described technique enables one to extract a signal of the pn --> pn eta
reaction whose shape is consistent with expectations, supporting the
correctness and usefulness of the method introduced.Comment: 14 pages, 10 figure
Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions
Elliptic flow and two-particle azimuthal correlations of charged hadrons and
high- pions ( 1 GeV/) have been measured close to mid-rapidity in
158A GeV/ Pb+Au collisions by the CERES experiment. Elliptic flow ()
rises linearly with to a value of about 10% at 2 GeV/. Beyond
1.5 GeV/, the slope decreases considerably, possibly indicating
a saturation of at high . Two-pion azimuthal anisotropies for
1.2 GeV/ exceed the elliptic flow values by about 60% in mid-central
collisions. These non-flow contributions are attributed to near-side and
back-to-back jet-like correlations, the latter exhibiting centrality dependent
broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure
- …