111 research outputs found

    In a comfort zone and beyond—Ecological plasticity of key marine mediators

    Get PDF
    Copepods of the genus Calanus are the key components of zooplankton. Understanding their response to a changing climate is crucial to predict the functioning of future warmer high‐latitude ecosystems. Although specific Calanus species are morphologically very similar, they have different life strategies and roles in ecosystems. In this study, C. finmarchicus and C. glacialis were thoroughly studied with regard to their plasticity in morphology and ecology both in their preferred original water mass (Atlantic vs. Arctic side of the Polar Front) and in suboptimal conditions (due to, e.g., temperature, turbidity, and competition in Hornsund fjord). Our observations show that “at the same place and time,” both species can reach different sizes, take on different pigmentation, be in different states of population development, utilize different reproductive versus lipid accumulation strategies, and thrive on different foods. Size was proven to be a very mutable morphological trait, especially with regard to reduced length of C. glacialis. Both species exhibited pronounced red pigmentation when inhabiting their preferred water mass. In other domains, C. finmarchicus individuals tended to be paler than C. glacialis individuals. Gonad maturation and population development indicated mixed reproductive strategies, although a surprisingly similar population age structure of the two co‐occurring species in the fjord was observed. Lipid accumulation was high and not species‐specific, and its variability was due to diet differences of the populations. According to the stable isotope composition, both species had a more herbivorous diatom‐based diet in their original water masses. While the diet of C. glacialis was rather consistent among the domains studied, C. finmarchicus exhibited much higher variability in its feeding history (based on lipid composition). Our results show that the plasticity of both Calanus species is indeed impressive and may be regulated differently, depending on whether they live in their “comfort zone” or beyond it.publishedVersionUnit Licence Agreemen

    Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard

    Get PDF
    A baseline study of hard-bottom zoobenthos in relation to environmental gradients in Kongsfjorden, a glacial fjord in Svalbard, is presented, based on collections from 1996 to 1998. The total species richness in 62 samples from 0 to 30 m depth along five transects was 403 species. Because 32 taxa could not be identified to species level and because 11 species are probably new to science, the total number of identified species was 360. Of these, 47 species are new for Svalbard waters. Bryozoa was the most diverse group. Biogeographic composition revealed features of both Arctic and sub-Arctic properties of the fauna. Species richness, frequency of species occurrence, mean abundance and biomass generally decreased towards the tidal glaciers in inner Kongsfjorden. Among eight environmental factors, depth was most important for explaining variance in the composition of the zoobenthos. The diversity was consistently low at shallow depths, whereas the non-linear patterns of species composition of deeper samples indicated a transitional zone between surface and deeper water masses at 15–20 m depth. Groups of “colonial” and “non-colonial” species differed in diversity, biogeographic composition and distribution by location and depth as well as in relation to other environmental factors. “Non-colonial” species made a greater contribution than “colonial” species to total species richness, total occurrence and biomass in samples, and were more influenced by the depth gradient. Biogeographic composition was sensitive to variation of zoobenthic characteristics over the studied depth range. A list of recorded species and a description of sampling sites are presented

    Citizen-science for the future: Advisory case studies from around the globe

    Full text link
    © 2019 Simoniello, Jencks, Lauro, Loftis, Weslawski, Deja, Forrest, Gossett, Jeffries, Jensen, Kobara, Nolan, Ostrowski, Pounds, Roseman, Basco, Gosselin, Reed, Wills and Wyatt. The democratization of ocean observation has the potential to add millions of observations every day. Though not a solution for all ocean monitoring needs, citizen scientists offer compelling examples showcasing their ability to augment and enhance traditional research and monitoring. Information they are providing is increasing the spatial and temporal frequency and duration of sampling, reducing time and labor costs for academic and government monitoring programs, providing hands-on STEM learning related to real-world issues and increasing public awareness and support for the scientific process. Examples provided here demonstrate the wide range of people who are already dramatically reducing gaps in our global observing network while at the same time providing unique opportunities to meaningfully engage in ocean observing and the research and conservation it supports. While there are still challenges to overcome before widespread inclusion in projects requiring scientific rigor, the growing organization of international citizen science associations is helping to reduce barriers. The case studies described support the idea that citizen scientists should be part of an effective global strategy for a sustained, multidisciplinary and integrated observing system

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF
    corecore