410 research outputs found

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co

    DNA databanks and consent: A suggested policy option involving an authorization model

    Get PDF
    BACKGROUND: Genetic databases are becoming increasingly common as a means of determining the relationship between lifestyle, environmental exposures and genetic diseases. These databases rely on large numbers of research subjects contributing their genetic material to successfully explore the genetic basis of disease. However, as all possible research questions that can be posed of the data are unknown, an unresolved ethical issue is the status of informed consent for future research uses of genetic material. DISCUSSION: In this paper, we discuss the difficulties of an informed consent model for future ineffable uses of genetic data. We argue that variations on consent, such as presumed consent, blanket consent or constructed consent fail to meet the standards required by current informed consent doctrine and are distortions of the original concept. In this paper, we propose the concept of an authorization model whereby participants in genetic data banks are able to exercise a certain amount of control over future uses of genetic data. We argue this preserves the autonomy of individuals at the same time as allowing them to give permission and discretion to researchers for certain types of research. SUMMARY: The authorization model represents a step forward in the debate about informed consent in genetic databases. The move towards an authorization model would require changes in the regulatory and legislative environments. Additionally, empirical support of the utility and acceptability of authorization is required

    Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups

    TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

    Get PDF
    Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohn's disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3βˆ’/βˆ’ mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3βˆ’/βˆ’ mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation

    Implication for Functions of the Ectopic Adipocyte Copper Amine Oxidase (AOC3) from Purified Enzyme and Cell-Based Kinetic Studies

    Get PDF
    AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected kcat values as high as 7 sβˆ’1. Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured kcat/Km values between 102 and 104 Mβˆ’1 sβˆ’1. Km(O2) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates kcat/Km values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell Km values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high kcat/Km have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous bacterial infiltration and obesity

    A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection

    Get PDF
    The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV) produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-ΞΊB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections
    • …
    corecore