13 research outputs found

    Remote sensing of phytoplankton biomass in oligotrophic and mesotrophic lakes: addressing estimation uncertainty through machine learning

    Get PDF
    Phytoplankton constitute the bottom of the aquatic food web, produce half of Earth’s oxygen and are part of the global carbon cycle. A measure of aquatic phytoplankton biomass therefore functions as a biological indicator of water status and quality. The abundance of phytoplankton in most lakes on Earth is low because they are weakly nourished (i.e., oligotrophic). It is practically infeasible to measure the millions of oligotrophic lakes on Earth through field sampling. Fortunately, phytoplankton universally contain the optically active pigment chlorophyll-a, which can be detected by optical sensors. Earth-orbiting satellite missions carry optical sensors that provide unparalleled high spatial coverage and temporal revisit frequency of lakes. However, when compared to waters with high nutrient loading (i.e., eutrophic), the remote sensing estimation of phytoplankton biomass in oligotrophic lakes is prone to high estimation uncertainties. Accurate retrieval of phytoplankton biomass is severely constrained by imperfect atmospheric correction, complicated inherent optical property (IOP) compositions, and limited model applicability. In order to address and reduce the current estimation uncertainties in phytoplankton remote sensing of low - moderate biomass lakes, machine learning is used in this thesis. In the first chapter the chlorophyll-a concentration (chla) estimation uncertainty from 13 chla algorithms is characterised. The uncertainty characterisation follows a two-step procedure: 1. estimation of chla from a representative dataset of field measurements and quantification of estimation uncertainty, 2. characterisation of chla estimation uncertainty. The results of this study show that estimation uncertainty across the dataset used in this chapter is high, whereby chla is both systematically under- and overestimated by the tested algorithms. Further, the characterisation reveals algorithm-specific causes of estimation uncertainty. The uncertainty sources for each of the tested algorithms are discussed and recommendations provided to improve the estimation capabilities. In the second chapter a novel machine learning algorithm for chla estimation is developed by combining Bayesian theory with Neural Networks (NNs). The resulting Bayesian Neural Networks (BNNs) are designed for the Ocean and Land Cover Instrument (OLCI) and MultiSpectral Imager (MSI) sensors aboard the Sentinel-3 and Sentinel-2 satellites, respectively. Unlike established chla algorithms, the BNNs provide a per-pixel uncertainty associated with estimated chla. Compared to reference chla algorithms, gains in chla estimation accuracy > 15% are achieved. Moreover, the quality of the provided BNN chla uncertainty is analysed. For most observations (> 75%) the BNN uncertainty estimate covers the reference in situ chla value, but the uncertainty calibration is not constantly accurate across several assessment strategies. The BNNs are applied to OLCI and MSI products to generate chla and uncertainty estimates in lakes from Africa, Canada, Europe and New Zealand. The BNN uncertainty estimate is furthermore used to deal with uncertainty introduced by prior atmospheric correction algorithms, adjacency affects and complex optical property compositions. The third chapter focuses on the estimation of lake biomass in terms of trophic status (TS). TS is conventionally estimated through chla. However, the remote sensing of chla, as shown in the two previous chapters, can be prone to high uncertainty. Therefore, in this chapter an algorithm for the direct classification of TS is designed. Instead of using a single algorithm for TS estimation, multiple individual algorithms are ensembled through stacking, whose estimates are evaluated by a higher-level meta-learner. The results of this ensemble scheme are compared to conventional switching of reference chla algorithms through optical water types (OWTs). The results show that estimation of TS is increased through direct classification rather than indirect estimation through chla. The designed meta-learning algorithm outperforms OWT switching of chla algorithms by 5-12%. Highest TS estimation accuracy is achieved for high biomass waters, whereas for low biomass waters extremely turbid waters produced high TS estimation uncertainty. Combining an ensemble of algorithms through a meta-learner represents a solution for the problem of algorithm selection across the large variation of global lake constituent concentrations and optical properties

    Merging of the Case 2 Regional Coast Colour and Maximum-Peak Height chlorophyll-a algorithms: validation and demonstration of satellite-derived retrievals across US lakes

    Get PDF
    Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll-a (chl-a, µg L−1) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl-a with in-water algorithms. Validation of chl-a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl-a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH(P)) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl-a data. The best performance based on mean absolute multiplicative error (MAEmult) was demonstrated by the merged algorithm referred to as C15−M10 (MAEmult = 1.8, biasmult = 0.97, n = 836). In the C15−M10 algorithm, the MPH(P) chl-a value was retained if it was > 10 µg L−1; if the MPH(P) value was ≤ 10 µg L−1, the C2RCC value was selected, as long as that value was  <  15 µg L−1. Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl-a algorithms previously reported independently. Additionally, it contributes to the transition of chl-a algorithm maturity by quantifying error statistics for a number of locations and times

    Meta-classification of remote sensing reflectance to estimate trophic status of inland and nearshore waters

    Get PDF
    Common aquatic remote sensing algorithms estimate the trophic state (TS) of inland and nearshore waters through the inversion of remote sensing reflectance (Rrs ()) into chlorophyll-a (chla) concentration. In this study we present a novel method that directly inverts Rrs () into TS without prior chla retrieval. To successfully cope with the optical diversity of inland and nearshore waters the proposed method stacks supervised classification algorithms and combines them through meta-learning. We demonstrate the developed methodology using the waveband configuration of the Sentinel-3 Ocean and Land Colour Instrument on 49 globally distributed inland and nearshore waters (567 observations). To assess the performance of the developed approach, we compare the results with TS derived through optical water type (OWT) switching of chla retrieval algorithms. Meta-classification of TS was on average 6.75% more accurate than TS derived via OWT switching of chla algorithms. The presented method achieved 90% classification accuracies for eutrophic and hypereutrophic waters and was 12% more accurate for oligotrophic waters than derived through OWT chla retrieval. However, mesotrophic waters were estimated with lower accuracy from both our developed method and through OWT chla retrieval (52.17% and 46.34%, respectively), highlighting the need for improved base algorithms for low - moderate biomass waters. Misclassified observations were characterised by highly absorbing and/or scattering optical properties for which we propose adaptations to our classification strategy

    A Bayesian approach for remote sensing of chlorophyll-a and associated retrieval uncertainty in oligotrophic and mesotrophic lakes

    Get PDF
    Satellite remote sensing of chlorophyll-a concentration (chla) in oligotrophic and mesotrophic lakes faces uncertainties from sources such as atmospheric correction, complex inherent optical property compositions, and imperfect algorithmic retrieval. To improve chla estimation in oligo- and mesotrophic lakes, we developed Bayesian probabilistic neural networks (BNNs) for the Sentinel-3 Ocean and Land Cover Instrument (OLCI) and Sentinel-2 MultiSpectral Imager (MSI). The BNNs were built using an in situ dataset of oligo- and mesotrophic water bodies (1755 observations from 178 systems; median chla: 5.11 mg m−3, standard deviation: 10.76 mg m−3) and provide a per-pixel uncertainty percentage associated with retrieved chla. Shifts of oligo- and mesotrophic systems into the eutrophic regime, characterised by higher biomass levels, are widespread. To account for phytoplankton biomass fluctuation, a set of eutrophic lakes (167 observations from 31 systems) were included in this study (maximum chla 68 mg m−3). The BNNs were evaluated through five assessments including single day and time series match-ups with OLCI and MSI. OLCI BNN accuracy gains of >25% and MSI BNN accuracy gains of >15% were achieved in the assessments when compared to chla reference algorithms for oligotrophic waters (chla ≤ 8 mg m−3). In comparison to the reference algorithms, the accuracy gains of the BNNs decreased as chla and trophic levels increased. To measure the quality of the provided BNN uncertainty estimate, we calculated the prediction interval coverage probability (PICP), Sharpness and mean absolute calibration difference (MACD) metrics. The associated BNN chla uncertainty estimate included the reference in situ chla values for most observations (PICP ≥ 75%) across the different performance assessments. Further analysis showed that the BNN chla uncertainty estimate was not constantly well-calibrated across different evaluation strategies (Sharpness 1.7–6, MACD 0.04–0.25). BNN uncertainties were used to test two chla improvement strategies: 1) identifying and filtering uncertain chla estimates using scene-specific thresholds, and 2) selecting the most accurate prior atmospheric correction algorithm per individual satellite observation to retain chla with the lowest BNN uncertainty. Both strategies increased the quality of the chla result and demonstrated the significance of uncertainty estimation. This study serves as research on Bayesian machine learning for the estimation and visualisation of chla and associated retrieval uncertainty to develop harmonised products across OLCI and MSI for small and large oligo- and mesotrophic lakes

    Estimating the concentration of total suspended solids in inland and coastal waters from Sentinel-2 MSI: A semi-analytical approach

    Get PDF
    Inland and coastal waters provide key ecosystem services and are closely linked to human well-being. In this study, we propose a semi-analytical method, which can be applied to Sentinel-2 MultiSpectral Instrument (MSI) images to retrieve high spatial-resolution total suspended solids (TSS) concentration in a broad spectrum of aquatic ecosystems ranging from clear to extremely turbid waters. The presented approach has four main steps. First, the remote sensing reflectance (Rrs) at a band lacking in MSI (620 nm) is estimated through an empirical relationship from Rrs at 665 nm. Second, waters are classified into four types (clear, moderately turbid, highly turbid, and extremely turbid). Third, semi-analytical algorithms are used to estimate the particulate backscattering coefficient (bbp) at a reference band depending on the water types. Last, TSS is estimated from bbp at the reference band. Validation and comparison of the proposed method with three existing methods are performed using a simulated dataset (N = 1000), an in situ dataset collected from global inland and coastal waters (N = 1265) and satellite matchups (N = 40). Results indicate that the proposed method can improve TSS estimation and provide accurate retrievals of TSS from all three datasets, with a median absolute percentage error (MAPE) of 14.88 %, 31.50 % and 41.69 % respectively. We also present comparisons of TSS mapping between the Sentinel-3 Ocean and Land Colour Instrument (OLCI) and MSI in Lake Kasumigaura, Japan and the Tagus Estuary, Portugal. Results clearly demonstrate the advantages of using MSI for TSS monitoring in small water bodies such as rivers, river mouths and other nearshore waters. MSI can provide more detailed and realistic TSS estimates than OLCI in these water bodies. The proposed TSS estimation method was applied to MSI images to produce TSS time-series in Lake Kasumigaura, which showed good agreements with in situ and OLCI-derived TSS time-series

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.Additional co-authors: Courtney Di Vittorio, Nathan Drayson, Reagan M. Errera, Virginia Fernandez, Dariusz Ficek, Cédric G. Fichot, Peter Gege, Claudia Giardino, Anatoly A. Gitelson, Steven R. Greb, Hayden Henderson, Hiroto Higa, Abolfazl Irani Rahaghi, Cédric Jamet, Thomas Jordan, Kersti Kangro, Jeremy A. Kravitz, Arne S. Kristoffersen, Raphael Kudela, Lin Li, Martin Ligi, Hubert Loisel, Steven Lohrenz, Ronghua Ma, Daniel A. Maciel, Tim J. Malthus, Bunkei Matsushita, Mark Matthews, Camille Minaudo, Deepak R. Mishra, Sachidananda Mishra, Tim Moore, Wesley J. Moses, Hà Nguyễn, Evlyn M. L. M. Novo, Stéfani Novoa, Daniel Odermatt, David M. O’Donnell, Leif G. Olmanson, Michael Ondrusek, Natascha Oppelt, Sylvain Ouillon, Waterloo Pereira Filho, Stefan Plattner, Antonio Ruiz Verdú, Salem I. Salem, John F. Schalles, Stefan G. H. Simis, Eko Siswanto, Brandon Smith, Ian Somlai-Schweiger, Mariana A. Soppa, Elinor Tessin, Hendrik J. van der Woerd, Andrea Vander Woude, Ryan A. Vandermeulen, Vincent Vantrepotte, Marcel R. Wernand, Kyana Young & Linwei Yu

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring

    Combined Earth observations reveal the sequence of conditions leading to a large algal bloom in Lake Geneva

    Get PDF
    Freshwater algae exhibit complex dynamics, particularly in meso-oligotrophic lakes with sudden and dramatic increases in algal biomass following long periods of low background concentration. While the fundamental prerequisites for algal blooms, namely light and nutrient availability, are well-known, their specific causation involves an intricate chain of conditions. Here we examine a recent massive Uroglena bloom in Lake Geneva (Switzerland/France). We show that a certain sequence of meteorological conditions triggered this specific algal bloom event: heavy rainfall promoting excessive organic matter and nutrients loading, followed by wind-induced coastal upwelling, and a prolonged period of warm, calm weather. The combination of satellite remote sensing, in-situ measurements, ad-hoc biogeochemical analyses, and three-dimensional modeling proved invaluable in unraveling the complex dynamics of algal blooms highlighting the substantial role of littoral-pelagic connectivities in large low-nutrient lakes. These findings underscore the advantages of state-of-the-art multidisciplinary approaches for an improved understanding of dynamic systems as a whole

    Combined Earth observations reveal the sequence of conditions leading to a large algal bloom in Lake Geneva

    No full text
    International audienceAbstract Freshwater algae exhibit complex dynamics, particularly in meso-oligotrophic lakes with sudden and dramatic increases in algal biomass following long periods of low background concentration. While the fundamental prerequisites for algal blooms, namely light and nutrient availability, are well-known, their specific causation involves an intricate chain of conditions. Here we examine a recent massive Uroglena bloom in Lake Geneva (Switzerland/France). We show that a certain sequence of meteorological conditions triggered this specific algal bloom event: heavy rainfall promoting excessive organic matter and nutrients loading, followed by wind-induced coastal upwelling, and a prolonged period of warm, calm weather. The combination of satellite remote sensing, in-situ measurements, ad-hoc biogeochemical analyses, and three-dimensional modeling proved invaluable in unraveling the complex dynamics of algal blooms highlighting the substantial role of littoral-pelagic connectivities in large low-nutrient lakes. These findings underscore the advantages of state-of-the-art multidisciplinary approaches for an improved understanding of dynamic systems as a whole

    GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality

    Get PDF
    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring
    corecore