2,516 research outputs found
LANDSAT applications to wetlands classification in the upper Mississippi River Valley
A 25% improvement in average classification accuracy was realized by processing double-date vs. single-date data. Under the spectrally and spatially complex site conditions characterizing the geographical area used, further improvement in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS. Full scene analysis of scanning densitometer data extracted from scale infrared photography failed to permit discrimination of many wetland and nonwetland cover types. When classification of photographic data was limited to wetland areas only, much more detailed and accurate classification could be made. The integration of conventional image interpretation (to simply delineate wetland boundaries) and machine assisted classification (to discriminate among cover types present within the wetland areas) appears to warrant further research to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scale photography
Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels
The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided
Routing Games over Time with FIFO policy
We study atomic routing games where every agent travels both along its
decided edges and through time. The agents arriving on an edge are first lined
up in a \emph{first-in-first-out} queue and may wait: an edge is associated
with a capacity, which defines how many agents-per-time-step can pop from the
queue's head and enter the edge, to transit for a fixed delay. We show that the
best-response optimization problem is not approximable, and that deciding the
existence of a Nash equilibrium is complete for the second level of the
polynomial hierarchy. Then, we drop the rationality assumption, introduce a
behavioral concept based on GPS navigation, and study its worst-case efficiency
ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
Terahertz frequency standard based on three-photon coherent population trapping
A scheme for a THz frequency standard based on three-photon coherent
population trapping in stored ions is proposed. Assuming the propagation
directions of the three lasers obey the phase matching condition, we show that
stability of few 10 at one second can be reached with a precision
limited by power broadening to in the less favorable case. The
referenced THz signal can be propagated over long distances, the useful
information being carried by the relative frequency of the three optical
photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2
(24/05/2007
Evaluation of the self-energy correction to the g-factor of S states in H-like ions
A detailed description of the numerical procedure is presented for the
evaluation of the one-loop self-energy correction to the -factor of an
electron in the and states in H-like ions to all orders in .Comment: Final version, December 30, 200
Zeeman effect of the hyperfine structure levels in hydrogenlike ions
The fully relativistic theory of the Zeeman splitting of the hyperfine
structure levels in hydrogenlike ions is considered for the magnetic field
magnitude in the range from 1 to 10 T. The second-order corrections to the
Breit -- Rabi formula are calculated and discussed. The results can be used for
a precise determination of nuclear magnetic moments from factor
experiments.Comment: 13 page
Penning traps as a versatile tool for precise experiments in fundamental physics
This review article describes the trapping of charged particles. The main
principles of electromagnetic confinement of various species from elementary
particles to heavy atoms are briefly described. The preparation and
manipulation with trapped single particles, as well as methods of frequency
measurements, providing unprecedented precision, are discussed. Unique
applications of Penning traps in fundamental physics are presented.
Ultra-precise trap-measurements of masses and magnetic moments of elementary
particles (electrons, positrons, protons and antiprotons) confirm
CPT-conservation, and allow accurate determination of the fine-structure
constant alpha and other fundamental constants. This together with the
information on the unitarity of the quark-mixing matrix, derived from the
trap-measurements of atomic masses, serves for assessment of the Standard Model
of the physics world. Direct mass measurements of nuclides targeted to some
advanced problems of astrophysics and nuclear physics are also presented
g factor of lithiumlike silicon 28Si11+
The g factor of lithiumlike 28Si11+ has been measured in a triple-Penning
trap with a relative uncertainty of 1.1x10^{-9} to be g_exp=2.0008898899(21).
The theoretical prediction for this value was calculated to be
g_th=2.000889909(51) improving the accuracy to 2.5x10^{-8} due to the first
rigorous evaluation of the two-photon exchange correction. The measured value
is in excellent agreement with the state-of-the-art theoretical prediction and
yields the most stringent test of bound-state QED for the g factor of the
1s^22s state and the relativistic many-electron calculations in a magnetic
field
- …
