23 research outputs found
A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form
Background: More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5′ and 3′ ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results: The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A<G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A<G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A<G splice mutation. Conclusion: We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. © 2009 Concolino et al; licensee BioMed Central Ltd
Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency
<p>Abstract</p> <p>Background</p> <p>Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in <it>CYP21A2 </it>gene. The human gene is located at 6p21.3 within a <it>locus </it>containing the genes for putative serine/threonine Kinase <it>RP</it>, complement <it>C4</it>, steroid 21-hydroxylase <it>CYP21 </it>tenascin <it>TNX</it>, normally, in a duplicated cluster known as RCCX module. The <it>CYP21 </it>extra copy is a pseudogene (<it>CYP21A1P</it>). In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric <it>CYP21A1P/A2 </it>genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular <it>C4/CYP21 locus</it>. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency.</p> <p>Methods</p> <p>We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of <it>CYP21A1P/A2 </it>chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with <it>C4/CYP21 </it>30-kb deletion were included in the study.</p> <p>Results</p> <p>An allele carrying a <it>CYP21A1P/A2 </it>chimeric gene was found unusually associated to a <it>C4B/C4A </it><it>Taq </it>I 6.4-kb fragment, generally associated to <it>C4B </it>and <it>CYP21A1P </it>deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in <it>CYP21A1P </it>of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different approaches revealed nine haplotypes for deleted 21-hydroxylase deficiency alleles.</p> <p>Conclusions</p> <p>This study demonstrated high allelic variability for 30-kb deletion in patients with 21-hydroxylase deficiency indicating that a founder effect might be improbable for most monomodular alleles carrying <it>CYP21A1P/A2 </it>chimeric genes in Brazil.</p
Mutation Analysis of the CYP21A2
Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene. Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions. Results: The most frequent mutations detected were gene deletions and chimera (31.8%). Other mutation frequencies were as follows: Q318X, 15.9%; I2G, 14.8%; I172N, 5.8%; gene duplication, 5.7%; R356W, 8%; and E6 cluster mutations, 2.3%. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3%, 85.7%, 100%, and 0, respectively. Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans