3 research outputs found

    Alma resolves the Torus of NGC 1068: continuum and molecular line emission

    Get PDF
    Garcia-Burillo, S. et. al.We used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 μm continuum emission from the 300 pc sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ∼4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near- and mid-infrared (NIR/MIR) data with CLUMPY torus models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: and R torus = 3.5 ± 0.5 pc. The dynamics of the molecular gas in the torus show strong non-circular motions and enhanced turbulence superposed on a surprisingly slow rotation pattern of the disk. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we found evidence suggesting that the molecular torus is less inclined (i = 34°-66°) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei tori. © 2016. The American Astronomical Society. All rights reserved.S.G.B., A.U., L.C., I.M., and A.F. acknowledge support from Spanish grants AYA2012-32295 and AYA2013-42227-PPeer reviewe

    A Herschel/PACS Far-infrared line emission survey of local luminous infrared galaxies

    Get PDF
    We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, ΣIR\Sigma_{\rm IR}. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is nen_{\rm e} = 41 cm−3^{-3}. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, nHn_{\rm H}, and intensity of the interstellar radiation field, in units of G0_0, and find G0_0/nHn_{\rm H} ratios ~0.1-50 cm3^3, with ULIRGs populating the upper end of the distribution. There is a relation between G0_0/nHn_{\rm H} and ΣIR\Sigma_{\rm IR}, showing a critical break at ΣIR⋆\Sigma_{\rm IR}^{\star} ~ 5 x 1010^{10} Lsun/kpc2^2. Below ΣIR⋆\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} remains constant, ~0.32 cm3^3, and variations in ΣIR\Sigma_{\rm IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above ΣIR⋆\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} increases rapidly with ΣIR\Sigma_{\rm IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources

    A Herschel/PACS Far-infrared line emission survey of local luminous infrared galaxies

    No full text
    We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, ΣIR\Sigma_{\rm IR}. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is nen_{\rm e} = 41 cm−3^{-3}. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, nHn_{\rm H}, and intensity of the interstellar radiation field, in units of G0_0, and find G0_0/nHn_{\rm H} ratios ~0.1-50 cm3^3, with ULIRGs populating the upper end of the distribution. There is a relation between G0_0/nHn_{\rm H} and ΣIR\Sigma_{\rm IR}, showing a critical break at ΣIR⋆\Sigma_{\rm IR}^{\star} ~ 5 x 1010^{10} Lsun/kpc2^2. Below ΣIR⋆\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} remains constant, ~0.32 cm3^3, and variations in ΣIR\Sigma_{\rm IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above ΣIR⋆\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} increases rapidly with ΣIR\Sigma_{\rm IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources
    corecore