10 research outputs found

    Allergy to tree-of-heaven pollen in Germany: detection by positive nasal provocation

    Get PDF
    <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Advanced component-resolved diagnostics (CRD) in Hymenoptera venom allergy (HVA) has improved the precise description of individual sensitization profiles. However, diagnostic gaps, peptide-based cross-reactivity, early identification of severe reactors and diagnosis of patients with a clear history of sting reactions but negative specific IgE and skin tests, remain challenging.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Systematic literature search in PubMed and critical analysis of recently published studies on insect venom allergy diagnostics.</jats:p> </jats:sec><jats:sec> <jats:title>Results and discussion</jats:title> <jats:p>CRD has increased the sensitivity of IgE testing and improved the discrimination of primary sensitization from irrelevant cross-reactivity, ultimately providing a better rationale for therapeutic decisions. Despite these major advances, there is still room for improvement in routine HVA diagnostics. Peptide based cross-reactivity among homologous allergens from <jats:italic>Vespinae</jats:italic> and <jats:italic>Polistinae</jats:italic> venoms as well as still existing diagnostic gaps are particularly challenging. No marker allergens are currently available to differentiate <jats:italic>Vespula</jats:italic> and <jats:italic>Polistes</jats:italic> sensitizations. Several strategies including clinical setting of basophil activation test (BAT) for routine diagnostics, venomic analysis for the identification of novel allergens and characterization of the molecular basis of cross-reactivity could be used to address major limitations and unresolved issues in molecular diagnostics of HVA.</jats:p> </jats:sec&gt

    The grass pollen season 2015: a proof of concept multi-approach study in three different European cities

    No full text
    Background Grasses release the most widespread aeroallergens with considerable sensitization rates, while different species produce several pollen concentration peaks throughout the season. This study analyzed the prevalence of grass species in three different European city areas and compared the flowering period of these species with daily pollen concentrations and the symptom loads of grass pollen allergy sufferers.Methods The most prevalent grass species in Vienna (Austria), Berlin (Germany) and Turku (Finland) were studied and examined by use of three different approaches: phenology, pollen monitoring and symptom load evaluation. A mobile pollen exposure chamber was employed to observe reaction patterns of grass pollen allergy sufferers to three common grass species evaluated in this study versus placebo.Results Common meadow grass (Poa pratensis) and the fescue grass species (Festuca spp.) are important contributors within the grass pollen season. The pollination period of orchard grass (Dactylis glomerata) and false-oat grass (Arrhenatherum elatius) indicated a greater importance in Berlin and Vienna, whereas a broader spectrum of grass species contributed in Turku to the main pollen season. The standardized provocation induced a nasal symptom load, reduction in nasal flow and increased secretion, in contrary to the placebo control group in grass pollen allergic subjects.Conclusion The phenological observations, pollen measurements and symptom data evaluation provided unique insights into the contribution of multiple grass species in different European regions. All investigated grass species in the provocation induced rhinitis symptoms of comparable significance, with some degree of variation in symptom patterns. Keywords: Grass pollen allergy, Symptom data, Phenology, Patient’s Hayfever Diary, Pollen exposure chambe

    An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals

    No full text
    Societal Impact Statement Pollen relates to many aspects of human and environmental health, which protection and improvement are endorsed by the United Nations Sustainable Development Goals. By highlighting these connections in the frame of current challenges in monitoring and research, we discuss the need of more integrative and multidisciplinary pollen research related to societal needs, improving health of humans and our ecosystems for a sustainable future. Summary Pollen is at once intimately part of the reproductive cycle of seed plants and simultaneously highly relevant for the environment (pollinators, vector for nutrients, or organisms), people (food safety and health), and climate (cloud condensation nuclei and climate reconstruction). We provide an interdisciplinary perspective on the many and connected roles of pollen to foster a better integration of the currently disparate fields of pollen research, which would benefit from the sharing of general knowledge, technical advancements, or data processing solutions. We propose a more interdisciplinary and holistic research approach that encompasses total environmental pollen diversity (ePD) (wind and animal and occasionally water distributed pollen) at multiple levels of diversity (genotypic, phenotypic, physiological, chemical, and functional) across space and time. This interdisciplinary approach holds the potential to contribute to pressing human issues, including addressing United Nations Sustainable Development Goals, fostering social and political awareness of these tiny yet important and fascinating particles

    The grass pollen season 2015: a proof of concept multi-approach study in three different European cities

    No full text
    Background: Grasses release the most widespread aeroallergens with considerable sensitization rates, while different species produce several pollen concentration peaks throughout the season. This study analyzed the prevalence of grass species in three different European city areas and compared the flowering period of these species with daily pollen concentrations and the symptom loads of grass pollen allergy sufferers. Methods: The most prevalent grass species in Vienna (Austria), Berlin (Germany) and Turku (Finland) were studied and examined by use of three different approaches: phenology, pollen monitoring and symptom load evaluation. A mobile pollen exposure chamber was employed to observe reaction patterns of grass pollen allergy sufferers to three common grass species evaluated in this study versus placebo. Results: Common meadow grass (Poa pratensis) and the fescue grass species (Festuca spp.) are important contributors within the grass pollen season. The pollination period of orchard grass (Dactylis glomerata) and false-oat grass (Arrhenatherum elatius) indicated a greater importance in Berlin and Vienna, whereas a broader spectrum of grass species contributed in Turku to the main pollen season. The standardized provocation induced a nasal symptom load, reduction in nasal flow and increased secretion, in contrary to the placebo control group in grass pollen allergic subjects. Conclusion: The phenological observations, pollen measurements and symptom data evaluation provided unique insights into the contribution of multiple grass species in different European regions. All investigated grass species in the provocation induced rhinitis symptoms of comparable significance, with some degree of variation in symptom patterns.© The Author(s). 201

    Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe

    No full text
    Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown−no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen−virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.</p
    corecore