72 research outputs found

    EpCAM (CD326) finding its role in cancer

    Get PDF
    Although epithelial cell adhesion/activating molecule (EpCAM/CD326) is one of the first tumour-associated antigens identified, it has never received the same level of attention as other target proteins for therapy of cancer. It is also striking that ever since its discovery in the late 1970s the actual contribution of EpCAM to carcinogenesis remained unexplored until very recently. With a First International Symposium on EpCAM Biology and Clinical Application this is now changing. Key topics discussed at the meeting were the frequency and level of EpCAM expression on various cancers and its prognostic potential, the role of EpCAM as an oncogenic signalling molecule for cancer cells, recent progress on EpCAM-directed immunotherapeutic approaches in clinical development and the interaction of EpCAM with other proteins, which may provide a basis for a therapeutic window and repression of its growth-promoting signalling in carcinoma. Future research on EpCAM may benefit from a unified nomenclature and more frequent exchange among those who have been working on this cancer target during the past 30 years and will do so in the future

    EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer

    Get PDF
    BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is frequently expressed in breast cancer, and its expression has been associated with poor prognosis. Breast cancer can be subdivided into intrinsic subtypes, differing in prognosis and response to therapy. METHODS: To investigate the association between EpCAM expression and prognosis in the intrinsic subtypes of breast cancer, we performed immunohistochemical studies on a tissue microarray encompassing a total of 1365 breast cancers with detailed clinicopathological annotation and outcomes data. RESULTS: We observed EpCAM expression in 660 out of 1365 (48%) cases. EpCAM expression varied significantly in the different intrinsic subtypes. In univariate analyses of all cases, EpCAM expression was associated with a significantly worse overall survival. In the intrinsic subtypes, EpCAM expression was associated with an unfavourable prognosis in the basal-like and luminal B HER2(+) subtypes but associated with a favourable prognosis in the HER2 subtype. Consistently, specific ablation of EpCAM resulted in increased cell viability in the breast cancer cell line SKBR3 (ER(−), PR(−), and HER2(+)) but decreased viability in the breast cancer cell line MDA-MB-231 (ER(−), PR(−), and HER2(−) ). CONCLUSION: The differential association of EpCAM expression with prognosis in intrinsic subtypes has important implications for the development of EpCAM-targeted therapies in breast cancer

    Carcinoma of an unknown primary: are EGF receptor, Her-2/neu, and c-Kit tyrosine kinases potential targets for therapy?

    Get PDF
    Carcinomas of an unknown primary site (CUP) are heterogeneous tumours with a median survival of only 8 months. Tyrosine kinase inhibitors are promising new drugs. The aim of this study was to determine the expression of EGF-receptor, Her-2/neu, and c-Kit tyrosine kinases in CUP. Paraffin-embedded specimens were obtained from 54 patients with a CUP who were included in the GEFCAPI 01 randomised phase II trial. Immunohistochemistry was performed using the Dako autostainer with antibodies directed against HER-2/neu protein, EGFR protein, and c-Kit protein (CD117). EGFR expression was found in 36 out of 54 samples (66%). In contrast, Her-2/neu overexpression and c-Kit positivity were only detected in 4 and 10% of patients, respectively. No significant association was found between the expression of the tyrosine kinase receptors and prognosis. EGFR expression was significantly associated with response to cisplatin-based chemotherapy: the response rates were 50 and 22% in patients with EGFR-positive tumours and EGFR-negative tumours, respectively (P<0.05). This study shows that EGFR is frequently expressed in CUP. This finding may prompt clinical trials investigating EGFR inhibitors in this setting. In contrast, c-Kit expression and Her-2/neu overexpression occur infrequently in CUP. EGFR expression was correlated to tumour chemosensitivity

    Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas

    Get PDF
    Recent data suggested an increased frequency of KIT aberrations in mucosal melanomas, whereas c-KIT in most types of cutaneous melanomas does not appear to be of pathogenetic importance. However, studies investigating the status of the KIT gene in larger, well-characterised groups of patients with mucosal melanomas are lacking. We analysed 44 archival specimens of 39 well-characterised patients with mucosal melanomas of different locations. c-KIT protein expression was determined by immunhistochemistry, KIT gene mutations were analysed by PCR amplification and DNA sequencing of exons 9, 11, 13, 17 and 18. c-KIT protein expression could be shown in 40 out of 44 (91%) tumours in at least 10% of tumour cells. DNA sequence analysis of the KIT was successfully performed in 37 patients. In 6 out of 37 patients (16%) KIT mutations were found, five in exon 11 and one in exon 18. The presence of mutations in exon 11 correlated with a significant stronger immunohistochemical expression of c-KIT protein (P=0.015). Among the six patients with mutations, in two patients the primary tumour was located in the head/neck region, in three patients in the genitourinary tract and in one patient in the anal/rectal area. In conclusion, KIT mutations can be found in a subset of patients with mucosal melanomas irrespective of the location of the primary tumour. Our data encourage therapeutic attempts with tyrosine kinase inhibitors blocking c-KIT in these patients

    Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers

    Get PDF
    Epithelial cell adhesion molecule (Ep-CAM; CD326) is used as a target by many immunotherapeutic approaches, but little data are available about Ep-CAM expression in major human malignancies with respect to level, frequency, tumour stage, grade, histologic tumour type and impact on survival. We analysed by immunohistochemical staining tissue microarrays with 4046 primary human carcinoma samples from colon, stomach, prostate and lung cancers for both frequency and intensity of Ep-CAM expression under highly standardised conditions. A total of 3360 samples were analysable. High-level Ep-CAM expression was observed in 97.7% (n=1186) of colon, 90.7% of gastric (n=473), and 87.2% of prostate cancers (n=414), and in 63.9% of lung cancers (n=1287). No detectable Ep-CAM staining was found with only 0.4% of colon, 2.5% of gastric, 1.9% of prostate cancers, and 13.5% of lung cancers. The only significant correlation of Ep-CAM expression with tumour grading was observed in colon cancer where high-level Ep-CAM expression on grade 3 tumours was down to 92.1% (P<0.0001). Adenosquamous and squamous carcinomas of the lung had a lower percentage of high-level Ep-CAM expression compared to adenocarcinomas with 35.4 and 53.6%, respectively, and with 45.5 and 17.3% of tumours being Ep-CAM negative. With the exception of moderately differentiated colon carcinoma, where patients not expressing Ep-CAM on their tumours showed an inferior survival (P=0.0014), correlation of Ep-CAM expression with survival did not reach statistical significance for any of the other cancer indications and subgroups. In conclusion, the data strongly support the notion that Ep-CAM is a prime target for immunotherapies in major human malignancies. This is because the most common human cancers show (i) a low frequency of Ep-CAM-negative tumours, (ii) a high frequency of Ep-CAM expression on cells of a given tumour, and (iii) for most cancers, an insignificant influence of tumour staging, grading and histology on Ep-CAM expression

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours

    Noncutaneous malignant melanoma: a prognostic model from a retrospective multicenter study

    Get PDF
    Abstract Background We performed multicenter study to define clinical characteristics of noncutaneous melanomas and to establish prognostic factors patients who received curative resection. Methods Of the 141 patients who were diagnosed of non-cutaneous melanoma at 4 institutions in Korea between June 1992 and May 2005, 129 (91.5%) satisfied the selection criteria. Results Of the 129 noncutaneous melanoma patients, 14 patients had ocular melanoma and 115 patients had mucosal melanoma. For mucosal melanoma, anorectum was the most common anatomic site (n = 39, 30.2%) which was followed by nasal cavity (n = 30, 23.3%), genitourinary (n = 21, 16.3%), oral cavity (n = 14, 10.9%), upper gastrointestinal tract (n = 6, 4.7%) and maxillary sinus (n = 5, 3.9%) in the order of frequency. With the median 64.5 (range 4.3-213.0) months follow-up, the median overall survival were 24.4 months (95% CI 13.2-35.5) for all patients, and 34.6 (95% CI 24.5-44.7) months for curatively resected mucosal melanoma patients. Adverse prognostic factors of survival for 87 curatively resected mucosal melanoma patients were complete resection (R1 resection margin), and age > 50 years. For 14 ocular melanoma, Survival outcome was much better than mucosal melanoma with 73.3% of 2 year OS and 51.2 months of median OS (P = .04). Conclusion Prognosis differed according to primary sites of noncutaneous melanoma. Based on our study, noncutaneous melanoma patients should be treated differently to improve survival outcome.Peer Reviewe

    Effects of EpCAM overexpression on human breast cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients.</p> <p>Methods</p> <p>In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed.</p> <p>Results</p> <p>For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578T<sup>EpCAM </sup>and MDA-MB-231<sup>EpCAM </sup>indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231<sup>EpCAM </sup>but not Hs578T<sup>EpCAM </sup>cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression.</p> <p>Conclusions</p> <p>These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.</p

    Molecular Biomarker Analyses Using Circulating Tumor Cells

    Get PDF
    Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard.Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs
    corecore