27 research outputs found

    Robust Interfacial Exchange Bias and Metal-Insulator Transition Influenced by the LaNiO3 Layer Thickness in La0.7Sr0.3MnO3/LaNiO3 Superlattices

    Get PDF
    Artificial heterostructures based on LaNiO3 (LNO) have been widely investigated with the aim to realize the insulating antiferromagnetic state of LNO. In this work, we grew [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices on (001)-oriented SrTiO3 substrates by pulsed laser deposition and observed an unexpected exchange bias effect in field-cooled hysteresis loops. Through X-ray absorption spectroscopy and magnetic circular dichroism experiments, we found that the charge transfer at the interfacial Mn and Ni ions can induce a localized magnetic moment. A remarkable increase of exchange bias field and a transition from metal to insulator were simultaneously observed upon decreasing the thickness of the LNO layer, indicating the antiferromagnetic insulator state in 2 unit cells LNO ultrathin layers. The robust exchange bias of 745 Oe in the superlattice is caused by an interfacial localized magnetic moment and an antiferromagnetic state in the ultrathin LNO layer, pinning the ferromagnetic La0.7Sr0.3MnO3 layers together. Our results demonstrate that artificial interface engineering is a useful method to realize novel magnetic and transport properties

    A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    Get PDF
    Abstract This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermalmechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermalmechanically induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts

    Bronchoalveolar Lavage Fluid-Derived Exosomes: A Novel Role Contributing to Lung Cancer Growth

    Get PDF
    Exosomes are nanovesicles produced by a number of different cell types and regarded as important mediators of cell-to-cell communication. Although bronchoalveolar lavage fluid (BALF) has been shown to be involved in the development of tumors, its role in lung cancer (LC) remains unclear. In this article, we systemically studied BALF-derived exosomes in LC. C57BL/6 mice were injected with Lewis lung carcinoma cells and exposed to non-typeable Haemophilus influenza (NTHi) lysate. The analysis showed that the growth of lung tumors in these mice was significantly enhanced compared with the control cohort (only exposure to air). Characterization of the exosomes derived from mouse BALF demonstrated elevated levels of tumor necrosis factor alpha and interleukin-6 in mice exposed to NTHi lysates. Furthermore, abnormal BALF-derived exosomes facilitated the development of LC in vitro and in vivo. The internalization of the BALF-derived exosomes contributed to the development of LC tumors. Collectively, our data demonstrated that exosomes in BALF are a key factor involved in the growth and progression of lung cancer

    RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design

    Full text link

    A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    No full text
    Abstract: As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermalmechanical responses was also achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level
    corecore