254 research outputs found

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method

    Get PDF
    Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor (SIPMSM), it is important to accurately calculate the temperature field distribution of SIPMSM, and a magnetic-thermal coupling method is proposed. The magnetic-thermal coupling mechanism is analyzed. The thermal network model and finite element model are built by this method, respectively. The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load, and the relationship between the load and temperature field is researched under the condition of the synchronous speed. In addition, the equivalent thermal network model is used to verify the magnetic-thermal coupling method. Then the temperatures of various nodes are obtained. The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method, which can be applied to other permanent magnet motors with complex structures

    Mover design and characteristics analysis of 2DoFDDIM

    Get PDF
    Two degree-of-freedom direct drive induction motor (2DoFDDIM), capable of rotary, linear and helical motion, has widespread application. A new mover structure is proposed, which is made from a hollow cylinder with copper cast in the axial slots and the circumferential slots on its surface. Then, three-dimensional finite element models of 2DoFDDIM are used to determine the performances of rotary, linear and helical motion developed by the motor. The results show that the new mover has a great improvement on the motor performances of all modes of motions compared with the initial mover. The researches on mover structure and characteristics of 2DoFDDIM present a new path of optimisation on 2DoFIM

    Performance analysis of the 2DoF direct drive induction motor applying composite multilayer method

    Get PDF
    This study presents a composite multilayer method (CMM) to evaluate the performance of a two-degree-offreedom (2DoF) direct drive induction motor (2DoFDDIM) whose solid rotor is coated with a copper layer. It includes a rotary part and a linear part. Based on the traditional multilayer theory, a complete 2DoFDDIM CMM computer program importing propagation constants is built. Due to the complex magnetic field in a 2DoFDDIM, this study mainly analyses it from the perspective of a single DOF motor. An equivalent circuit for the rotary part of the 2DoFDDIM is then derived applying CMM and the 2D magnetic field distribution is obtained by solving Maxwell's equations in motor layers. The developed torques, power factors and stator currents of the rotary part with different slips and the latter two of the linear part at zero speed are calculated by CMM, which are then compared with results from the finite element method (FEM) and experimental results. The computation time of the CMM is far less than that of the FEM. The acceptable accuracy confirms the effectiveness of the CMM for analysis and performance calculations of the 2DoFDDIM

    Design and analysis of a 2-DoF split-stator induction motor

    Get PDF
    A two degrees of freedom (2-DOF) actuator capable of producing linear translation, rotary motion, or helical motion would be a desirable asset to the fields of machine tools, robotics, and various apparatuses. In this paper, a novel 2-DOF split-stator induction motor was proposed and electromagnetic structure pa- rameters of the motor were designed and optimized. The feature of the direct-drive 2-DOF induction motor lies in its solid mover ar- rangement. In order to study the complex distribution of the eddy current field on the ferromagnetic cylinder mover and the motor’s operating characteristics, the mathematical model of the proposed motor was established, and characteristics of the motor were ana- lyzed by adopting the permeation depth method (PDM) and finite element method (FEM). The analytical and numerical results from motor simulation clearly show a correlation between the PDM and FEM models. This may be considered as a fair justification for the proposed machine and design tools

    Mathematical model of two-degree-of-freedom direct drive induction motor considering coupling effect

    Get PDF
    The Two-degree-of-freedom direct drive induction motor, which is capable of linear, rotary and helical two, has a wide application in special industry such as industrial robot arms. It is inevitable that the linear motion and rotary motion generate coupling effect on each other on account of the high integration. The analysis of this effect has great significance in the research of two-degree-of-freedom motors, which is also crucial to realize precision control of them. The coupling factor considering the coupling effect is proposed and addressed by 3D finite element method. Then the corrected mathematical model is presented by importing the coupling factor. The results from it are verified by 3D finite element model and prototype test, which validates the corrected mathematical model

    Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst via Co doping

    Get PDF
    This study presents successful growth of defective 2D terrace MoSe2/CoMoSe lateral heterostructures (LH), bilayer and multilayer MoSe2/CoMoSe LH, and vertical heterostructures (VH) nanolayers by doping metal Co (cobalt) element into MoSe2 atomic layers to form a CoMoSe alloy at the high temperature (~900 °C). After the successful introduction of metal Co heterogeneity in the MoSe2 thin layers, more active sites can be created to enhance hydrogen evolution reaction (HER) activities combining with metal Co catalysis, through the mechanisms including (1) atomic arrangement distortion in CoMoSe alloy nanolayers, (2) atomic level coarsening in LH interfaces and terrace edge layer architecture in VH, (3) formation of defective 2D terrace MoSe2 nanolayers heterogeneous catalyst via metal Co doping. The HER investigations indicated that the obtained products with LH and VH exhibited an improved HER activity in comparison with those from the pristine 2D MoSe2 electrocatalyst and LH type MoSe2/CoMoSe. The present work shows a facile yet reliable route to introduce metal ions into ultrathin 2D transition metal dichalcogenides (TMDCS) and produce defective 2D alloy atomic layers for exposing active sites, and thus eventually improve their electrocatalytic performance

    Dynamic multi-dimensional scaling of 30+ year evolution of Chinese urban systems: patterns and performance

    Get PDF
    Understanding the co-evolution and organizational dynamics of urban properties (i.e., urban scaling) is the science base for pursuing synergies toward sustainable cities and society. The generalization of urban scaling theory yet requires more studies from various developmental regimes and across time. Here, we extend the universality proposition by exploring the evolution of longitudinal and transversal scaling of Chinese urban attributes between 1987 and 2018 using a global artificial impervious area (GAIA) remotely sensed dataset, harmonized night light data (NTL), and socioeconomic data, and revealed agreements and disagreements with theories. The superlinear relationship of urban area and population often considered as an indicator of wasting land resources (challenging the universality theory β  = 2/3), is in fact the powerful impetus (capital raising) behind the concurrent superlinear expansion of socio-economic metabolisms (e.g., GDP, total wage) in a rapidly urbanizing country that has not yet reached equilibrium. Similarly, infrastructural variables associated with public services, such as hospitals and educational institutions, exhibited some deviations as well and were scaled linearly. However, the temporal narrowing of spatial deviations, such as the decline in urban land diseconomies of scale and the stabilization of economic output, clearly indicates the Chinese government's effort in charting urban systems toward balanced and sustainable development across the country. More importantly, the transversal sublinear scaling of areal-based socio-economic variables was inconsistent with the theoretical concept of increasing returns to scale, thus validating the view that a single measurement cannot unravel the intricate web of diverse urban attributes and urbanization. Our dynamic urban scaling analysis across space and through time in China provides new insights into the evolving nexus of urbanization, socioeconomic development, and national policies
    • …
    corecore